UDC 576.851.2

POSTOYAN, S. T., and GRIGORYAN, C. M., Yerevan Medical Institute, and Institute of Epidemiology and Hygiene imeni N. B. Akopyan

"Properties of Bacteriocins of Pathogenic and Nonpathogenic Staphylococci"

Yerevan, Biologicheskiy Zhurnal Armenii, Vol 23, No 7, 1970, pp 107-108

Abstract: A study of 46 pathogenic and 22 nonpathogenic staphylocin-producing strains showed that they differ from one another in various physicochemical properties. For example, 32 of the 68 were able to penetrate a cellophane membrane; 28 cultures remained stable for 3 to 5 days and 40 for only 1 or 2 days. Staphylococcus cultures were more sensitive to nonpathogenic staphylocin-producing strains. Six types of staphylocins were established on the basis of comparable characteristics. It is suggested that staphylocin typing may be used for epidemiological purposes.

1/1

CIA-RDP86-00513R002202520010-7" APPROVED FOR RELEASE: 08/09/2001

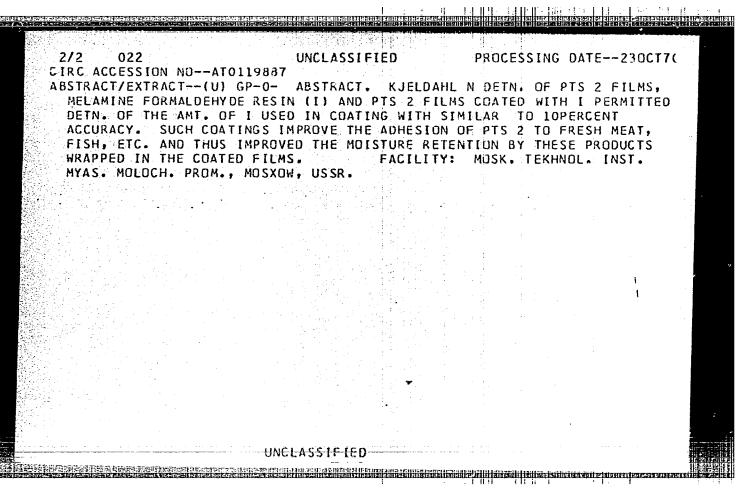
PROCESSING DATE--230CT70 UNCLASSIFIED TITLE--DETERMINATION OF A MODIFER USED IN PRODUCING CELLOPHANE

POLYETHYLENE FILM OF THE PTS 2 BRAND -U-AUTHOR-(04)-POSTRIGAN, H.V., ISHEVSKIY, G.M., DUBOV, O.YE., GUL, V.YE.

COUNTRY OF INFO--USSR

SOURCE--IZV. VYSSH. UCHEB. ZAVED., PISHCH. TEKHNOL. 1970, (1), 168-9

DATE PUBLISHED ---- 70


SUBJECT AREAS--MATERIALS, BIOLOGICAL AND HEDICAL SCIENCES, MECH., IND., TOPIC TAGS--POLYETHYLENE, PLASTIC FILM, MELAMINE RESIN, FOOD CONTAINER, ADHESION, SPECIALIZED COATING, PACKAGING MATERIAL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/1020

STEP NO--UR/0322/70/000/001/0168/0169

CIRC ACCESSION NO--ATOL19887 UNCLASSIFIED

1/2 012 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--INDUCED REACTIONS IN RADIOCHEMISTRY. III. EFFECT OF RADIOLYSIS
PRODUCTS ON THE COURSE OF INDUCED REACTIONS -UAUTHOR-(03)-POSVOLSKIY, M.I., TSIRLIN, I.I., KOCHNOY, V.A.

COUNTRY OF INFO--USSR

P

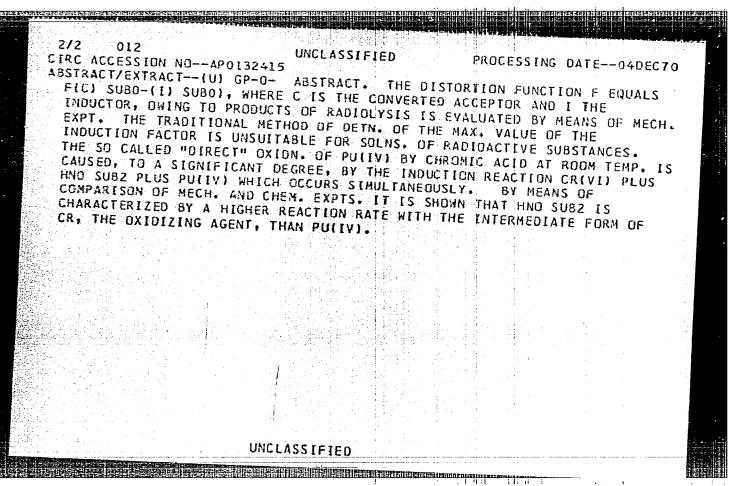
SOURCE-RADIOKHIMIYA 1970, 12(2), 367-73

DATE PUBLISHED----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--RADIOCHEMISTRY, RADIOLYSIS, CHROHIUM

CONTROL MARKING--NO RESTRICTIONS


PROXY REEL/FRAME--3005/0122

STEP NO--UR/0186/70/012/002/0367/0373

CIRC ACCESSION NO--APO132415

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

USSR

UDC 546.791:546.799:546.841.4

NIKOL'SKIY, B. P., MARKOV, G. S., and POSVOL'SKIY, M. V.

"Solubility of Complex Salts of Hexanitratothoreates of Quaternary

Ammonium Bases in Nitric Acid Solutions. III. Solubility as Function of Nitric Acid Concentration"

Moscow, Radiokhimiya, Vol 12, No 2, 1970, pp 272-278

Abstract: A study was made, on the example of the salt (DMDBA)₂[Th(NO₃)₆], where DMDBA = dimethyldibenzylammonium, of the solubility of quaternary ammonium salts of the alkyldimethylbenzylammonia and alkylpyridinium type as a function of nitric acid concentration in the solution. For comparison, solubilities were also determined for several other complex nitrate salts of thorium with organic (trimethylbenzylammonium and dimethylbenzylamine) and inorganic (Cs⁺) cations. The nitric acid concentration range was 2-10 M at 25°C. It was established that the appearance of a minimum in the curve of salt solubility was due mainly to the formation in solution of solvated forms of the quaternary base. It was also shown that the nature of the cation in the complex salt of the R₂[Th(NO₃)₆] type affects the position of the minimum in the solubility curve in accordance with the ability of the cation to form solvated forms with nitric acid.

COLUMN TENERS OF THE PROPERTY OF THE PROPERTY

I/2 012 UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--QUATERNARY AMMONIUM BASES AS ANALYTICAL REAGENTS. 1. SEPARATION
AND DETERMINATION OF THORIUM USING N BENZYLQUINOLINIUM NITRATE -UAUTHOR-(03)-MARKOV, G.S., NIKOLSKIY, B.P., POSVOLSKIY, H.V.

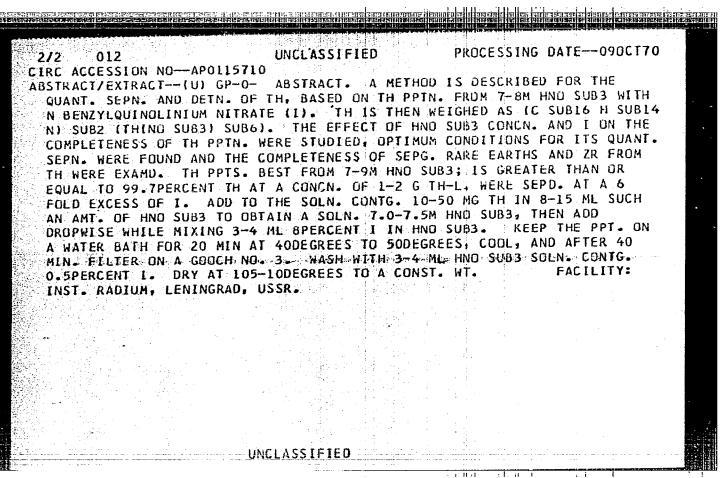
COUNTRY OF INFO-USSR

SOURCE-ZH. ANAL. KHIM. 1970, 25121, 277-80

DATE PUBLISHED----70

SUBJECT AREAS-CHEMISTRY

TOPIC TAGS-CHEMICAL ANALYSIS, CHEMICAL SEPARATION, THORIUM, NITRATE


CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/1891

STEP NO--UR/0075/70/025/002/0277/0280

CIRC ACCESSION NO-APOLISTIO

UNCLASSIFIED

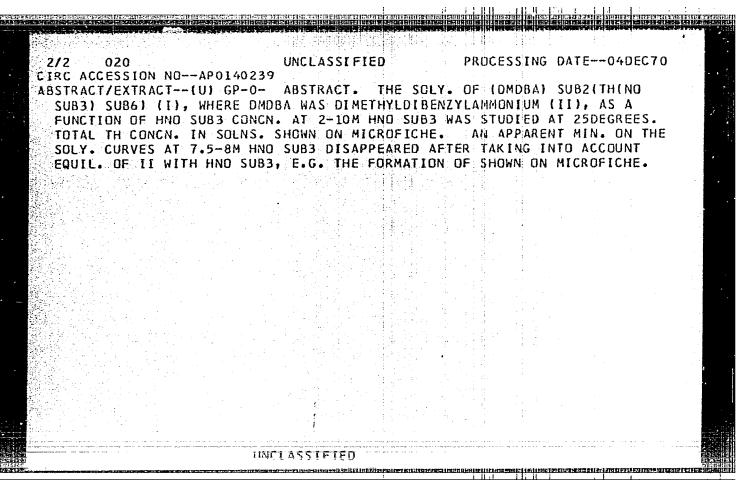
I/2 020 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--SOLUBILITY OF COMPLEX SALTS OF QUATERNARY AMMONIUM BASE
HEXANITRATOTHORATES IN NITRIC ACID SOLUTIONS. II. SOLUBILITY AS A
AUTHOR-(03)-NIKOLSKIY. B.P., MARKOV, G.S., POSVOLSKIY, M.V.

COUNTRY OF INFO--USSR

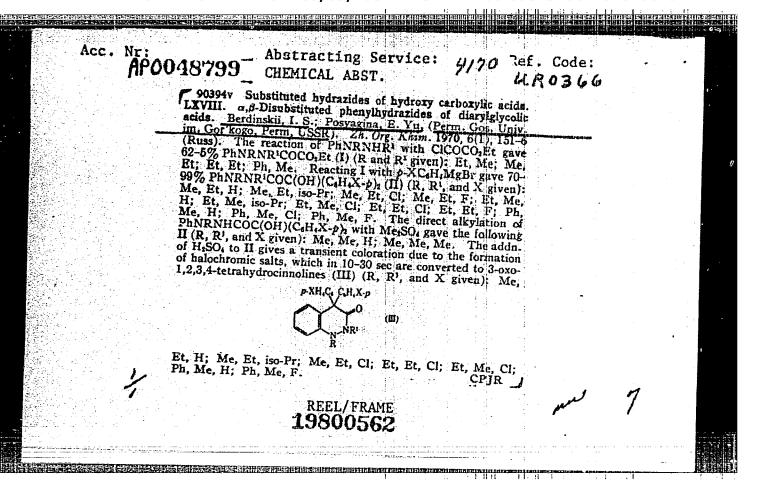
SOURCE--RADIOKHIMIYA 1970, 12(2), 272-8

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY


TOPIC TAGS--THORIUM COMPOUND, COMPLEX COMPOUND, QUARTERNARY AMMONIUM COMPOUND, SOLUBILITY, NITRIC ACID, CESIUM

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY FICHE NO---FD70/605012/803 STEP NO--UR/0186/70/012/002/0272/0278

CIRC ACCESSION NO--APO140239

UNCLASSIFIED

UNCLASSIFIED PROCESSING DATE--C3JUL7C THILE-SUSSTITUTED HYER ZIDES OF BYERCXY CARBOXYLIC ACIDS. LXVIII/ ALPHA AETA CISLESTITUTED PHENYLHYDRAZIDES CE CIARYLGLYCCLIC ACIDS -U-AUTHOR--BERDUNSKIY, I.S., FCSYAGINA, E.YU. COUNTRY CE INFE-LSSR SCURCE-21. CRG. KHIM. 1970, 6(1), 151-6 DATE FLEL ISHEC----7C SLEJECT AREAS--CHEMISTRY TOPIC TAGS - AZIDE, HYDROXYL RACICAL, CARROXYLIC ACID, BENZENE DERIVATIVE, HETERCCYCLIC LITTCGEN COMPCUND CENTREL MARKING-NE RESTRICTIONS BECUMENT CLASS--LACLASSIFIED PROXY RECE/FRAME--1580/0562 STEF NC--UR/0366/70/006/001/0151/0156 CIRC LCCESSION NE--AFCC48799 <u>-UNCLASSIFIEC-</u>

USSR

UDC: 621.396.621.59:621.396.669.8(088.8)

POSYAKOV, S. N., NERONOV, V. V., LITVIN, V. M.

"A Reception Device for Radio Communications Lines With 'Floating' Frequency"

USSR Author's Certificate No 259969, filed 26 Jul 68, published 4 May 70 (from RZh-Radictekhnika, No 11, Nov 70, Abstract No 11D55 P)

Translation: This Author's Certificate introduces a device which contains a wide-band amplifier with automatic control of the transfer constant, a frequency converter, a heterodyne with "floating frequency", a controlled synchronization module, and a narrow-band IF amplifier. To improve the effectiveness of suppressing concentrated interference and prevent this type of interference from overloading the signal processing channel, the device is equipped with an additional frequency converter and a stable fixed frequency oscillator which together effect transfer of the output signal spectrum from the wide-band amplifier into the range of variation of the floating--frequency heterodyne. The heterodyne voltage and the output voltage of the additional frequency converter are fed to the inputs of a low-frequency beat detector made in the form of a frequency converter, low-frequency filter and inertial amplitude detector connected in series. The output voltage of the inertial amplitude detector is fed to the transfer constant control circuit of the wide-band amplifier through an isolating capacitor which prevents the possibility of zero beats between the heterodyne voltage and signals from the radio line transmitter. To prevent the possibility of these low-fre-

1/2

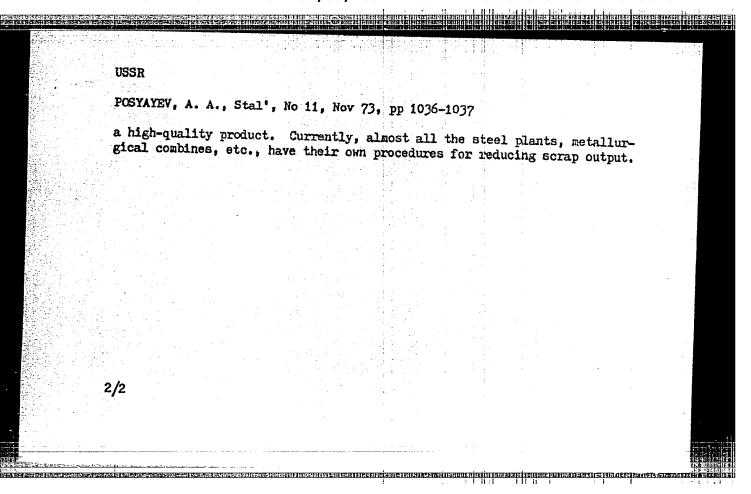
APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

POSYAKOV, S. N. et al., USSR Author's Certificate No 259969

quency beats in the case of a low degree of synchronism, the heterodyne is connected to the frequency converter in the main channel through a delay line which introduces a time lag greater than the ratio of the passband of the narrow-band IF amplifier to the rate of change in the "floating" frequency, but less than the time constant. N. S.

USSR

IDC 669.1.011.053.7


POSYSAYEY, A. A., Ministry of Ferrous Metallurgy USSR

"All-Union Conference on Improving Metal Production Quality"

Moseow, Stal', No 11, Nov 73, pp 1036-1037

Abstract: In May, 1973, an All-Union Conference on Improving Metal Production Quality was held in Zaporozh'ye. Participants of the conference gave and discussed reports on the basic directions of increasing metal production quality at ferrous metallurgy enterprises (N. I. SHEFTEL", Assistant Chief of the Main Technical Administration, Ministry of Ferrous Metallurgy USSR), on meeting specifications of State Standards by the enterprises (A. A. PCSYSAYEV, Chief of Quality Control, Ministry of Ferrous Metallurgy USSR), and on the basic directions of scientific research on (A. I. CSIPOV, Assistant Director, Central Scientific Research Institute of Scrap steel, resulting from too much sulfur, phosphorus, or nitrogen, by methods for making steel so that all steel-producing enterprises could insure

- 17 -

Steels

USSR

UDC 669.14.018.841

BABAKOV, A. A., ZHADAN, T. A., IEVIN, F. L., POSYSARVA MINISTRANS and FEL'DGANDLER, E. G. (Central Scientific Research Institute of Ferrous Metallurgy imeni

"Low-Carbon Corrosion-Resistant Steels"

Moscow, Stal', No 9, Sep 72, pp 836-839

Abstract: A survey is presented of investigations on corrosion-resistant -- especially low-carbon -- chromium-nickel steels of the austenitic class. The effect of various components of chemical composition on the susceptibility of the steels to intercrystalline corrosion is considered. It is recommended that carbon content in the steel be reduced and that the solid solution be stabilized by special alloying to prevent the formation of excess phases (O-phase) or carbides on the grain boundaries. The corrosion properties of new, recently developed steels of the austenitic and ferrite-austenitic class are discussed.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

USSR

UDC 669.15.018.8.620.196.2

POSYLAYEVA, L. I., SMIRNOVA, A. V., and BRODOVA, V. N.

"The Nature of Intercrystalline Corrosion in Low-Carbon Fe-Cr-Ni-Mo-Austenitic Steel"

Sb. tr. TsKII chern. metallurgii (Collection of Works of Central Scientific Research Institute of Ferrous Metallurgy), 1970, vyp. 77, pp 86-92 (from RZh-Metallurgiya, No 3, Far 71, Abstract No 31595 by authors)

Translation: Austenitic steel of the type 000Kh20N20M4 with varying degree of niobium stabilization was studied. The principal excess phases in steel without Nb are chromium carbides; in understabilized steel, the sigma phase, NbC, and dispersed chromium carbides of the type Ne₂C₆; in stabilized steel, the sigma phase and NbC. It was found that steel without Nb and understabilized steel are susceptible to intercrystalline corrosion in wet-process phosphoric acid. The reason for the appearance of intercrystalline corrosion is the formation of finely dispersed eutectic-type chromium carbides of the type Ne₂C₆, which, precipitating out on the grain boundaries and in the boundary zones, cause sharp chromium depletion of solid-solution regions directly adjacent to the carbide particles. Two illustrations. One table. Bibliography with two titles.

Steels

USSR

UDC 6 69.14.018.8

erosan deroles erregiere du linguera engaren du des principales qua de computation de la computation de la comp Escapación de la computation del computation de la computation

BABAKOV, A. A., POSYSAYEVA, L. I., PETROVSKAYA, V. A., and SIDORKINA, YU. S., Central Scientific Research Institute of Perrous Metallurgy imeni I. P. Bardin

"New High-Alloy Corrosion-Resistant Steel Type 000Kh2lN2nM4B"

Moscow, Zashchita Metallov, Vol 7, No 2, Mar-Apr 71, pp 99-103

Abstract: Experimental data are presented on the properties of the new COOKh21N21M4B steel, designed for the manufacture of equipment for the production of double superphosphate by extraction phosphoric acid containing fluoride compounds. The chemical composition and mechanical properties of the steel are presented, as well as certain data on the corrosion resistance of the steel and its physical properties. The chemical composition is (percent):

1/2

RABAKOV, A. A., et al., Zashchita Metallov, Vol 7, No 2, Mar-Apr C Mn Si P S Cr Ni Mo Nb Not Over O.03 0.6 0.6 0.03 0.02 The steel has high resistance to intercrystalline and knife-line
0.03 0.6 0.6 0.03 0.02 20-22 20-22 3,4-3.7 % CX15 up to
0.03 0.6 0.6 0.03 0.02 20-22 3,4-3.7 % CX15 up to

USSR

UDC 620.196.2.001.5

POSYSAYEVA. L. T., SMIRNOVA, A. V., and BRODOVA, V. N.

"The Nature of Intercrystalline Corrosion in Low-Carbon Fe-Cr-Ni-No Austenitic Steel"

Spetsial'nyye Stali i Splavy (Special Steels and Alloys -- Collection of Works), No 77, Metallurgiya Press, 1970, pp 86-92

Translation: A study is made of type 000Kh20N20M4 austenitic steel with various degrees of stabilization by miobium. The primary excess phases in the steel without niobium are chromium carbides; in the incompletely stabilized steel -- the or phase, NhC and dispersion charmium carbides such as Me23C6; in the stabilized steel -- the o phase and NbC.

It is established that the steel without niobium and the incompletely stabilized steel are inclined to intercrystalling corrosion (ICC) in extraction phosphoric acid.

The reason for the appearance of ICC is the formation of finely dispersed eutectic-type chromium carbides such as Me23C6 which, separating on the grain boundaries and in the boundary zones, cause a sharp chromium impoverishment of sectors of the solid solution immediately adjacent to the carbide particles. 2 figures; 1 table; 2 biblio. refs.

Steels

USSR

UDC 6 69.14.018.8

BABAKOV, A. A., POSYSAYFVA L. I., PETROVSKAYA, V. A., and SIDORKINA, YU. S., Central Scientific Research Institute of Ferrous Metallurgy imeni I. P. Bardin

"New High-Alloy Corrosion-Resistant Steel Type 000Kh2lN2nM4B"

Moscow, Zashchita Metallov, Vol 7, No 2, Mar-Apr 71, pp 99-103

Abstract: Experimental data are presented on the properties of the new 000Kh2lN2lM4B steel, designed for the manufacture of equipment for the production of double superphosphate by extraction phosphoric acid containing fluoride compounds. The chemical composition and mechanical properties of the steel are presented, as well as certain data on the corrosion resistance of the steel and its physical properties. The chemical composition is (percent):

1/2

USSR		
BABAKOV, A. A., et al 71, pp 99-103	., Zashchita Metallov, Vol 7, No	2, Mar-Apr
C Mn Si I	S Cr Ni Mo	Nb
Not Over 0.03 0.6 0.6 0.0		% CX15 up to 0.8
The steel has high res. corrosion.	istance to intercrystalline and	knife-line
		· · ·
2/2		
	- 64 -	

Steels

USSR

ШС 669.14.018.295

POTAK, YA. M., Vysokoprochnyye stall (High-Strength Steels), Koscow, Metallur-

Translation of Annotation: The monograph considers chiefly the achievements of Soviet physical metallurgy in the fields of high-strength construction and stainless steels. Their structure and heat treatment are described. Properties are presented and features of application of new types of high strength steels are inidcated for moderately alloyed transitional-class stainless and poorly aging, construction and stainless intensively aging steels.

Significant attention is devoted to various types of brittle failure and measures for avoiding them, Practical recommendations are indicated for application, as is the technology of processing components of high-strength

The monograph is intended for scientific workers, netallurgical engineers, and thermal engineers. 59 figures, 33 tables, 138 bibliographic

Table of Contents:

Introduction. Chapter I. High-Strength Moderately Alloyed Steels General Composition and Property Characteristics Failure With Repeated Stresses 1/2

Page

∴ 9

28

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

		ASSENCE RELEASE	MILERA EMPERATOR
4.1			
	왕이 살아갔다. 그 그 그는 그는 그들은 일도 아이를 살아 되었다. 그 그들은 그 그 그 그 그를 살아 있다.		
	POTAK, YA. M., High-Strength Steels, Moscow, Metallurgiya, 1972, 208 p		
	Moscow, Metallurgiya, 1972, 208 n	מ	*
	Some Remarks on the Desamine	<i>.</i>	
	High-Carbon Steels as Construction Materials Chapter II. Brittle Fallows	42	
		55	
	Chapter II. Brittle Failure of High-Strength Moderately Alloyed Steels Retarded Disintegration of Tempered Steel	55 64	•
	nydrogen Brittleness	64	
	Stress Correston Correston	69	
	Brittleness on Contact with Smelted Metallic Platings	90	
	Brittleness Dur to Surface Damage During Heat Treatment Chapter III. High-Strength Martensite Asia Metallic Platings	97	
	Chapter III. High-Strength Martensite Aging Construction Steels Structure and Properties of the Steel	106	
	Structure and Properties of the Steels N18K9M5T (VKS-210, MS-200	112	
	Superpotent Ct		5 -
	Super-strong Steels Chapter TV Week Strong	116	1
	Chapter IV. High-Strength Stainless Steels	139	
	The Carlot VI LIII DITTILATION CALL A	141	
	Stainless Martensite-Aging Steels	141	•
	Noncarbon Martensite-Aging Stainless Steels	145	
	The state of the s	160	-
	Brittleness of High-Strength Stainless Steels Due to Surface Dama During High-Temperature Heating	167	
	During High-Temperature Heating	£0	
	Bibliography 2/2	199	
	- 21 -	204	
			•
			Free last
	l i ii i i i i i i i i i i i i i i i i	. !	,

Mechanical Properties

USSR

KUPPA

UDC 669.14.018.8:620.18:620.17

VOZNESENSKAYA, N. M., IZOTOV, V. I., UL'YANOVA, N. V., FOPOVA, L. S., and

"Structure and Properties of High-Strength 1Khl5N4AH3 Stainless Steel"

Noscow, Metallovedeniye i Termicheskaya Obrabotka Metallov, No 1, 1971, pp

Abstract: The article describes results of a study of the effect of tempering temperature on the structural state and mechanical properties of 1Kn15N4AM3 (EP-310) stainless steel of the transition austenitic-narransitic class. Industrial electroslag-refined steel was used for the study. It was found that after tempering at 200° C the steel has higher mechanical properties (ductility, impact strength, and crack propagation energy) than widely-used structural high-strength steels (30KnGSNA) or maraging steels. The high and the retention of a sufficient quantity of carbon and nitrogen in the and an increase in ductility and impact strength as a result of reduced car-

1/2

- USSE

VOZNESENSKAYA, N. M., et al., Metallovedeniye i Termicheskaya Obrabotka Metallov, No 1, 1971, pp 32-35

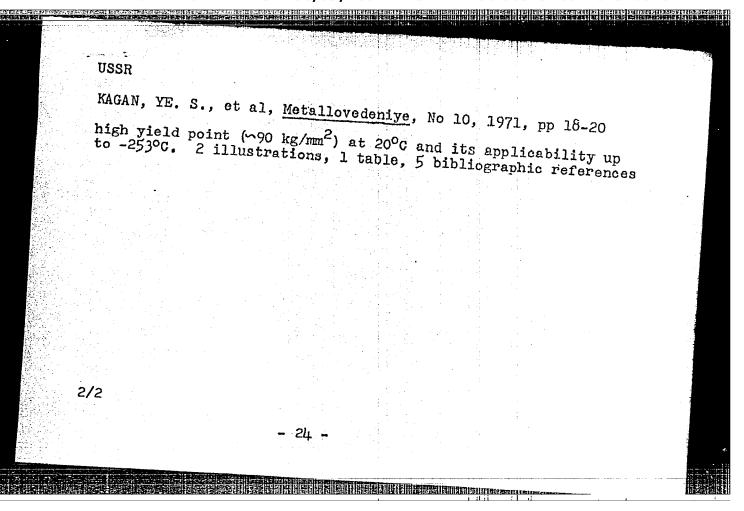
bon and nitrogen content of the solid solution, with retention of high dislocation density and distortions of the second kind. No precipitations are found with the decrease in the number of interstitial atoms in the solid solution. At 450-5000 c there is secondary hardening, consisting in the formation of highly dispersed particles of the chromium carbonitride M2X, accompanied by a slight reduction in ductility and impact strength and a significant decrease in crack propagation energy. The structure is characterized by a of the second kind. At 550-6500 c there is reverse C. Transformation. The transformation begins at about 5750 c, with the maximum amount of stable there is a decrease in strength, with formation of the carbides M23C6 along grain body and boundaries.

2/2

~ 28 -

AND THE PROPERTY OF THE PROPER

USSR


UDG 669.14.018.258.8:669-973

KAGAN, YE. S., POTAK, YA. M., SACHKOV, V. V., KOZLOVSKAYA, V. I., GRIKUROV, G. N., ALI-UNION Scientific Research Institute of Aviation Materials

"Stainless Steel of Increased Strength for Cryogenic Temperatures" Moscow, Metallovedeniye, No 10, 1971, pp 18-20

The mechanical properties of the 000KhllNl0M2T (EP678) hardened steel and its welded joints were experimentally investigated at temperatures up to -2530C. Standard teel specimens and specimens with cracks showed a high ductility and low notch sensitivity. With regard to mechanical properties, the investigated steel at -25300 is not inferior to the widely used 30KhGSNA steel at 20°C. The relatively slow cooling in soldering from 980 to 700°C has little effect on the steel plasticity, due to the negligible change of solubility of carbides in this temperature interval. Welded steel joints, without and with additives, possess high plasticity and show a completely ductile fracture from tangential stresses in tests up to -25300. 000KhllN10M2T steel is a promising material for cryogenic technology due to its

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

USSR

UDC 669.15.018.8(088.8)

FEDOTOVA, L. S., ALEKSEYENKO, M. F., POTAK, YA. M., BELYAKOVA, V. A., ORZHEKH-YU. F., SHEPETOV, V. A., TUPILIN, V. V., DORONIN, V. M., KLYUYEV,

"Stainless Steel"

USSR Author's Certificate No 276434, Filed 25 Jul 68, Published 13 Oct 70 (from RZh-Metallurgiya, No 4, Apr 71, Abstract No 41637P)

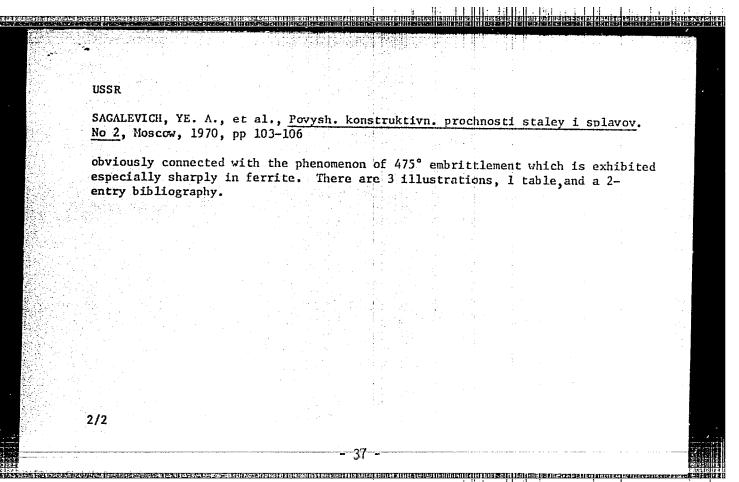
Translation: A steel for operation at temperatures up to 600° is proposed with the following composition (in %): C 0.05-0.09, Cr 10.5-12, Ni 1.4-1.8, Mo 0.35-0.5, Nb 0.06-0.15, V 0.15-0.25, Si \leq 0.6, Mn \leq 0.6, Ce \leq 0.02. The ratio of the alloying elements satisfies the formula $\overline{0.68\%}$ Cr + (% Mo + % V + + 2 Si) + 0.5% Nb - (30% C + % Ni + 0.5% Mn) < 6.6. After quenching from 1,0000 and tempering at 5700, at 20, 500, and 5500 the steel has σ_B of 120, 70, and 55 kg/mm², $O_{\rm T}$ of 100, 75, and 55 kg/mm², δ of 12% and δ of 60-65%, respectively; $O_{\rm T}^{500}$ and $O_{\rm T}^{500}$ are 56 and 32 kg/mm², respectively.

1/1

Mechanical Properties

USSR

UDC 669.15.018.8


SAGALEVICH, YE. A., POTAK, YA. M.

"Effect of Delta Ferrite on the Mechanical Properties of Martensitic Stain-less Steels"

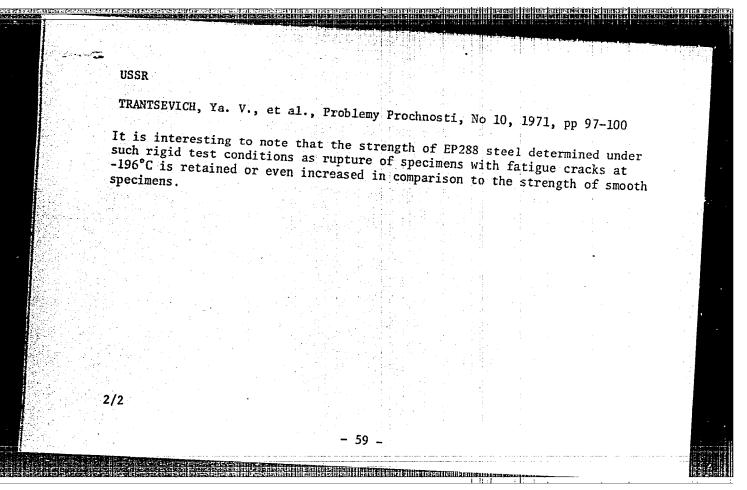
Povysh. konstruktivn. prochnosti staley i splavov. No 2 -- V sb (Improving the Structural Strength of Steels and Alloys. No 2 -- collection of works), Moscow, 1970, pp 103-106 (from RZh-Metallurgiya, No 4, Apr 71, Abstract No 41609)

Translation: A study was made of the effect of δ -ferrite on the mechanical properties of two melts of martensitic stainless steels with the following composition (in %): A -- C 0.065-0.079, Cr 13.28-13.48, Ni 2.54-7.12, Al 1.01-1.03, Mn 0.5, Si 0.6, N -- C 0.054-0.063, Cr 16.12, Ni 0.09-4.18, Mn 0.2, Si 0.15. The steel was quenched at 1,000-1,100° and tempered at 300°. The presence of 23% δ -ferrite in the steel of melt A does not lower and at room temperature; however, at -70° the value of a drops catastrophically. In samples of the melt N, the presence of 19% δ -ferrite lowers and sharply even at room temperature. This obviously is connected with the fact that the steel of melt N has coarser grain than the steel of melt A. Raising the tempering temperature to 500° intensifies the negative effect of the δ -ferrite. This is

and the control of th

USSR

UDC 539.5


TRANTSEVICH, Ya. V., POPOVA, L. S., POTAK, Ya. M., SUKHOTIN, A. M., GRIKUROV, G. N., ANTROPOV, N. P., Moscow, Tbilisi, Leningrad

"Study of Mechanical Properties of High Strength Stainless Steel of Transition Class EP288 [Kh16N6, SN-2A] at Cryogenic Temperature"

Problemy Prochnosti, No 10, 1971, pp 97-100.

Abstract: The purpose of this work was to study the properties of one of the most common chrome-nickel low-carbon steels in class EP288 at cryogenic temperatures. The studies were performed using experimental melts distinguished by their low carbon and chromium contents and varying contents of austenite in the steel structure. Heat treatment of the steel included hardening in water from 1,000°C, at which level dissolution of carbides occurs, cold treatment -70°C (2 hours) and tempering at 250°C (1 hour). The data indicated that type EP288 steel with the nominal composition, as well as all experimental melts except for one, has high ductility and impact toughness, including high impact toughness of specimens with cracks at down to -253°C. The nominal steel has high strength at both room and cryogenic temperatures, the level of which increases with decreasing test temperature.

1/2

ับรรก

UDC 615.28:547.337.3

SHAPILOV, O. D., RACHINSKIY, F. YU., OSIPYAN, V. T., DEKEL BAUM, A. B., POWANDERO, T. G., KRUNENINA, A. A., Military Medical Academy imeni S. H. Kirov, Leningrad

"Hexamethyleneimonium Compounds Containing Alkoxy-, Hydroxyand Cyanoalkyl Substituents at the Quaternary Mitrogen Atom, and Their Bactericidal Properties"

Moscow, Khimiko-Fermatsevticheskiy Zhurnel, No 2, Feb 71, Vol 5,

Abstract: Hexamethyleneimonium compounds with alkyl, carbalkoxymethyl, phenoxyethyl and other substituents with 17 to 21 carbon atoms at the a exhibit marked bactericidal action; ammonium compounds with alkoxymethyl groups at the queternary nitrogen atom are both good bactericides and highly water-soluble.

The author obtained a number of hexamethylimonium compounds by elkylation of tertiary derivatives of hexamethylenimine, and also some highly water-soluble compounds through synthesis of substances

- 42 -

3SR

SHAPILOV, O. D., et al, Khimiko-Farmatsevticheskiy Zhurnal, No 2, Feb 71, Vol 5, pp 19-22

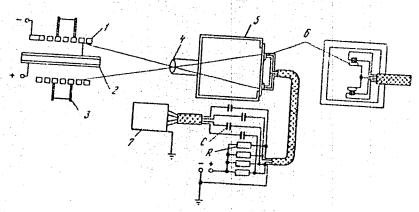
with cyanoethyl and cyanomethyl groups at the queternary nitrogen atom. Thirty-six compounds in all were studied for bactericidal and other properties.

Some 30 of these were quite effective against E. coli and Staphylococcus aureus, and were moderately or highly water-paper.

2/2

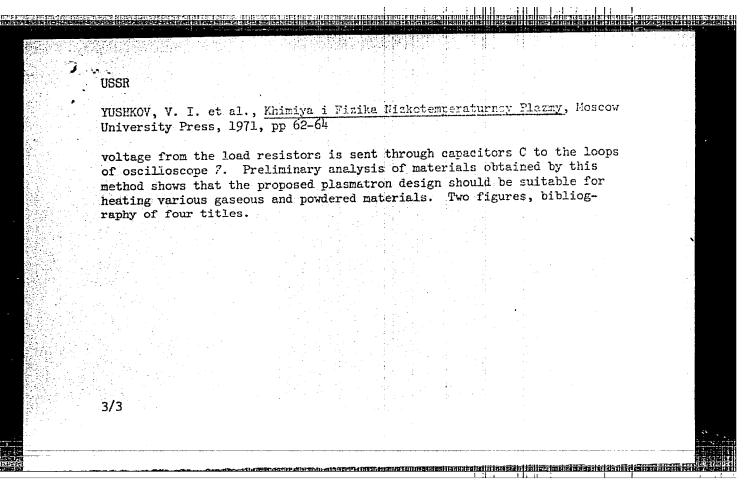
USSR

YUSHKOV, V. I., POTANIN V. N., KHOLODKOV, V. K., GRUZINOV, V. K., SHCHU-


"A Plasmatron With Magnetic Arc Stabilization"

Moscow, Khimiya i Fizika Nizkotemperaturnoy Plazmy, Moscow University Press, 1971, pp 62-64

Abstract: The authors investigate the behavior of an arc on a pilot model of a plasmatron with magnetic stabilization (diagrammed in the figure). The central uncooled graphite electrode 2 with outside diameter of 30 mm and the outer water-cooled copper electrode 1 of helical type with inside diameter of 50 mm are connected to a DC source. The outer conductor is surrounded by stabilizing coil 3 connected to an AC source. The arc was struck by a short, high-voltage rf pulse. The arc is rotated by the magnetic field produced by the outer electrode and the stabilizing coil. The shape of the outer electrode converts the arc to a helical line. Curtent alternation through the stabilizing coil reverses notion of the arc. Lens 4 projects a full-size image of the arc on the ground glass at the rear of camera 5. Four type FSK-1 resistors are fastened by pairs on the


USSR

YUSHKOV, V. I. et al., Khimiya i Fizika Nizkotemperaturnoy Plazmy, Moscow University Press, 1971, pp 62-64

ground glass as shown by 6. Each of these resistors is connected in series to a load resistor R and a DC voltage source. The rotating arc is peridrop in voltage across load resistors, with a resultant increase in the 2/3

- 82 -

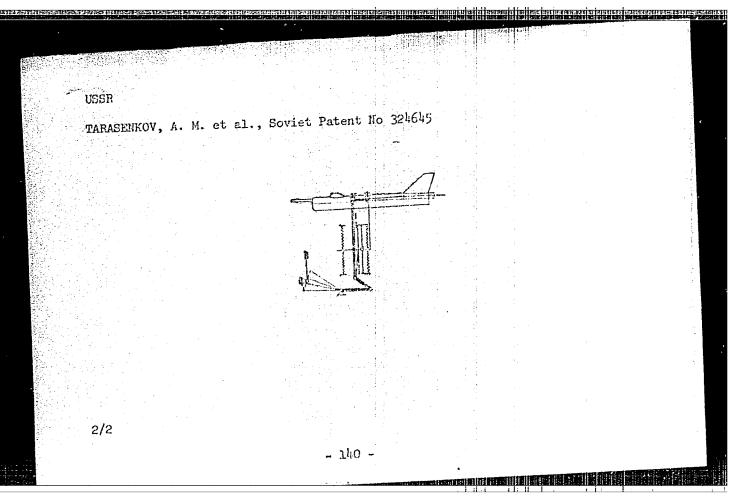
CIA-RDP86-00513R002202520010-7 "APPROVED FOR RELEASE: 08/09/2001

USSR

UDC: 629.7.018.2

TARASENKOV, A. M., POTANIN, Yu. F., MIRONENKO, A. I.

"A Model Which Simulates Longitudinal Oscillations of an Aircraft"


Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 2, Jan 72, Author's Certificate No 324645, Division G, filed 18 Nov 69, published 23 Dec 71, pp 159-160

Translation: This Author's Certificate introduces a model which simulates longitudinal oscillations of an aircraft. The model contains a fuselage with horizontal stabilizers and hinged elevator, control levers, clauses and measuring equipment. As a distinguishing feature of the patent, in order to demonstrate the longitudinal motion of an aircraft, the model is hinged at the center of gravity and the focus on clamped rods which move in grooves lengthwise of the model. The rods are coupled to springs and control levers. The spring for the rod fastened to the focus of the model, and the elevator, are fastened through tie rods to the control lever.

1/2

CIA-RDP86-00513R002202520010-7" APPROVED FOR RELEASE: 08/09/2001

Serrescup seriore de superiore de marche de la company de la company de la company de la company de la company

UDC 547.1.3'821

KOST, A. N., YUROVSKAYA, M. M., MEL'NIKOVA, T. V., and POTANINA, O. I., Moscow State University imeni N. V. Lomonosov

"Chemistry of Indole. XXXIII. Pyridylethylation of the NH Group of Indole Compounds"

Riga, Khimiya Geterotsiklicheskikh Soyedineniy, No 2, Feb 73, pp 207-212

Abstract: Direct pyridylethylation of pyrrole, of a series of indole compounds, of carbazole and carboline was carried out taking advantage of the ability of highly polar aprotonic solvents -- such as dimethylsulfoxide / DrS0 / -to activate the anion forming on the NH group to such an extent that even the relatively poorly polarized bond in 3-vinylpyridine was adequately activated for the reaction to take place. The activation by DISO is based on the fact that in absence of protonic solvents, when no hydrogen bonds can form, the anions being formed are solvated to a lesser degree and therefore are more reactive. The reaction goes especially well when excess 2-methyl-5-vinylpyridine is used, and the reaction mixture is heated to 100-2000. Metallic sodium or sodium ethoxide can be used as the alkaline reagents.

1/1

USSR

POTAPCHUK, A. N., Candidate of Biological Sciences and Master of Sports USSR

"Reaction of the Human Organism to Physical Exercise at High Altitude"

Moscow, Teoriya i Praktika Fizicheskoy Kul'tury, No 1, 1973, p 43

Translation: We carried out investigations on 450 young people aged 19-23 who had lived in the mountains for various lengths of time. The subjects performed physical exercises and physical loads in the Pamirs at an altitude of 3,932 m. The purpose of the studies was to determine the influence of physical loads on the human organism at high altitude, as well as to pinpoint what physical loads are most acceptable under these conditions for active adaptation and what amount of time is needed for recovery.

The physical loads were: running 100 and 1,000 m, chinups (as many as possible), and a step test (a measured physical load, that is, climbing onto a

stool 50 cm high for 3 min, 30 times in 1 min).

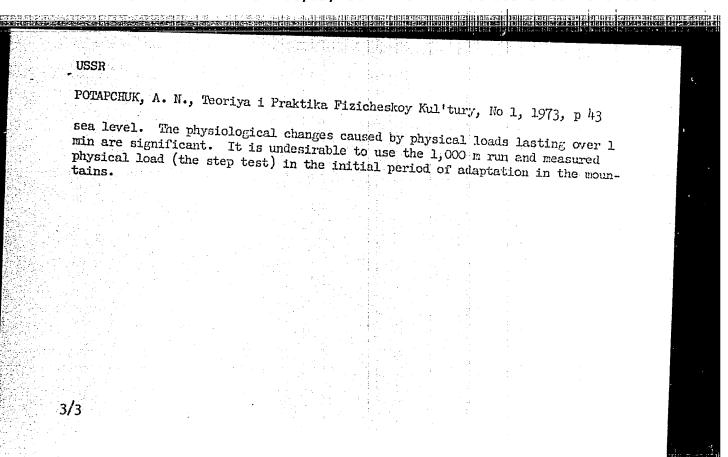
The investigations conducted showed that when physical loads of different intensity were used on persons who had lived at the given altitude for 2-3 years, ventilation increased by 105% in comparison with the data obtained after a run of 1,000 m at an altitude of 477 m, respiration was quick and broken, and the recuperative period was four times as long. The 100 m dash and the chinning caused insignificant changes in external respiration and the recuperative period differed little from that at sea level. The respiratory reaction 1/3

ारा हरूना विकास कारण है। कि इस्तर के अपने कारण है। कि इस्तर के अपने कारण है। कि इस्तर कारण है। कि इस्तर कारण ह अपने कारण है। कि इस अपने कारण है। कि इस कारण है। कि इस

USSR

POTAPCHUK, A. N., Teoriya i Praktika Fizicheskoy Kul'tury, No 1, 1973, p 43

to the step test was the same as for the 1,000 m run.


It was also shown that under physical loads in the mountains the pulse rate rises sharply and arterial blood pressure changes significantly. For instance, the 100 m dash and chimning are accomplished with relative ease: the pulse quickens by 70-80%, arterial blood pressure rises by 20-40%, and a comparatively rapid return to the initial values occurs. The 1,000 m run and the measured physical load (the step test) proved difficult for the subjects: the pulse was almost continuously at 217-230, maximum arterial blood pressure rose by 50-70% and the minimum blood pressure went unchanged in some subjects, declined in others, and rose slightly in a few, and the recuperative period lasted about 24 hrs, or longer for some.

Our investigations showed that the cardiac and respiratory rates are dependent on the intensity of the work performed and the atmospheric pressure.

The cardiovescular system reacted normally only to physical loads whose accomplishment required a small amount of oxygen; a physical load entailing high oxygen consumption throus the system out of the equilibrium that has been established at a given altitude.

The results obtained make it possible to draw some conclusions. In particular, the recuperative period is much longer at high altitudes than at 2/3

n 59 n

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

स्थानि हो। यो क्षानाम् विकास स्थापनी क्षानाम् । एकारा स्थापनाम् विकास स्थापनी स्थापनी

USSR

UDC 535.37:548.736

erikan di kanangan di mengangan kanangan kanangan di mengan di mengangan di mengan di merapakan di mengan di m Sepingan di mengangan mengangan di mengan di mengangan di mengangan di mengangan di mengangan di mengangan di m

PISARENKO, V. F., POTAPENKO, G. D.

"On the Question of the Luminescence of Eu3+ and Tb3+ Ions in NaF Single Crystals"

V sb. Peredacha energii v kondensirovan. sredakh (Energy Transfer in Condensed Hedia — Collection of Works), Yerevan, 1970, pp 176-183 (from RZh-Fizika, No 7, Jul 71, Abstract No 7D798)

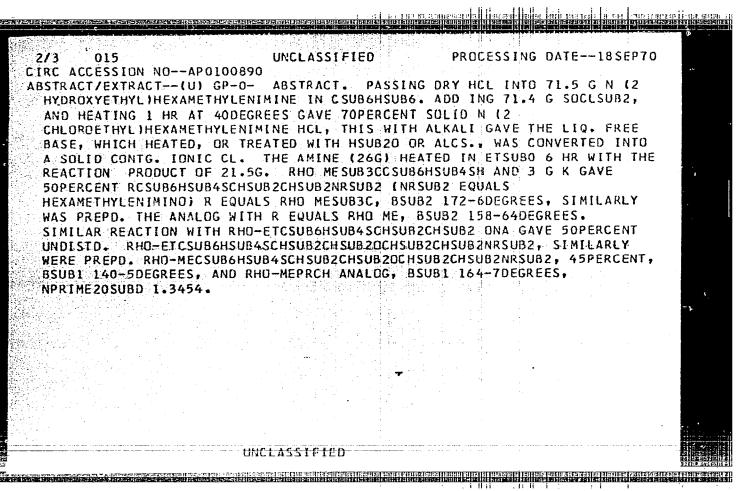
Translation: A study was made of the excitation spectra and the dependence of the luminescence of Eu³⁺ ions on lifetime and temperature in NaF Crystals. It was shown that the excitation spectra for the luminescence of europium ions in crystals activated by Eu³⁺ and Eu³⁺ together with Tb³⁺ were identical. It was concluded that energy transfer from Tb³⁺ ions to Eu³⁺ ions does not occur in NaF crystals activated by Eu³⁺ and Tb³⁺ ions at room temperature. 5 ref. V. S. Z.

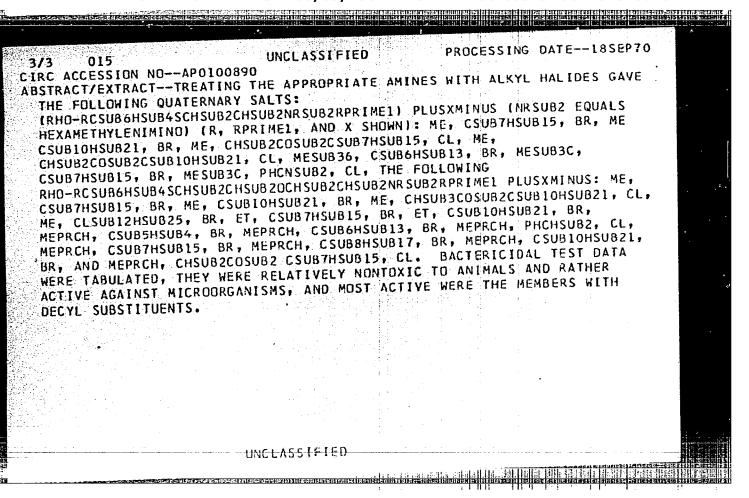
1/1

UNCLASSIFIED PROCESSING DATE--1855770 1/3 015 TITLE-SYNTHESIS AND STUDY OF HEXAMETHYLENIMMONIUM COMPOUNDS AS BACTERIDES AUTHOR-(04)-SHAPILOV, O.D., MAMEDOV, F.N., POTAPENKO, T.G., OSIPYAN, V.T. COUNTRY OF INFO--USSR SOURCE--ZH. PRIKL. KHIM. (LENINGRAD) 1970, 43(1), 131-5 DATE PUBLISHED----70 SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS--BACTERICIDE, PHENOL, GRGANIC SULPHUR COMPOUND, AMMONIUM COMPOUND, ALKYL RADICAL, HALIDE

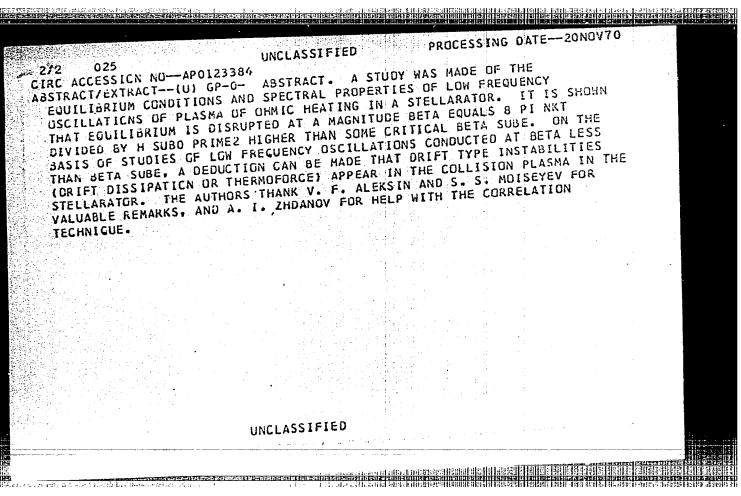
CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1985/0407


STEP NO--UR/0080/70/043/001/0131/0135


a constant (Talenta in the san

CIRC ACCESSION NO--APO100890


UNCLASSIFIED

CIA-RDP86-00513R002202520010-7" APPROVED FOR RELEASE: 08/09/2001

UNCLASSIFIED PROCESSING DATE—20NOV70 ITTLE—THE MECHANISM OF PLASMA LOSSES IN A STELLARATOR —U— SUTHOR—(C5)—BURCHENKO, P.YA., VASILENKG, B.T., VQLKOV, YE.D., PAVLICHENKO, U.S., POTAPENKO, V.A. CCUNTRY ET INTO—USSR SCURCE—MOSCCA, ATCMNAYA ENERGIYA, VOL 28, NO 2, FEB 70, PP 126—129 DATE PUBLISHED———70 SUBJECT AKEAS—PHYSICS TCPIC TAGS—PLASMA QSCILLATION, LOW FREQUENCY, STELLARATOR CCNTRCL MARKING—NO RESTRICTIONS DGCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1999/1481 STEP NO—UR/0089/70/028/002/0126/0129 CIRC ACCESSICN NO—AP0123384 UNCLASSIFIED.		
UNCLASSIFIED ITTLE—THE MECHANISM OF PLASMA LOSSES IN A STELLARATOR -U- ITTLE—THE MECHANISM OF PLASMA LOSSES IN A STELLARATOR -U- ITTLE—THE MECHANISM OF PLASMA LOSSES IN A STELLARATOR -U- AUTHOR—(C5)—BURCHENKU, P.YA., VASILENKG, B.T., VOLKOV, YE.D., PAVLICHENKO, D.S., PUTAPENKU, V.A. CCUNTRY PROFESSIONAL ENERGIYA. VOL 28, NO 2, FEB 70, PP 126—129 SCURCE—MOSCCA, ATCMNAYA ENERGIYA. VOL 28, NO 2, FEB 70, PP 126—129 DATE PUBLISHED————70 SUBJECT AKEAS—PHYSICS TCPIC TAGS—PLASMA QSCILLATION, LOW FREQUENCY, STELLARATOR CCNTRCL MAKKING—NO KESTRICTIONS DGCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1999/1481 STEP NG—UR/Q089/70/028/002/0126/0129		PROCESSING DATE-20NOVTO
AUTHOR-(C5)-BLRCHENKU, P.YA., VALUES, PUTAPENKU, V.A. CEUNTRY CHINEG-USSR SCURCE-MOSCCA, ATCMNAYA ENERGIYA, VOL 28, NO 2, FEB 70, PP 126-129 DATE PUBLISHED7C SUBJECT AREAS-PHYSICS TCPIC TAGS-PLASMA GSCILLATION, LOW FREQUENCY, STELLARATOR CCNTRCL MARKING-NO RESTRICTIONS DOCUMENT GLASS-UNCLASSIFIED PROXY REEL/FRAME-1999/1481 PROXY REEL/FRAME-1999/1481	UNCL 1.2 025 ITLETHE MECHANISM OF PLASMA LO	ASSIFIED CTELLARATOR -U-
SCURCE—MOSCCM, ATCMNAYA ENERGIYA, VOL 28, NO 2, FEB 70, PP 120 DATE PUBLISHED————————————————————————————————————	AUTHOR-(C5)-BURCHENKU, P.YA., VA	
SUBJECT AREAS—PHYSICS SUBJECT AREAS—PHYSICS TCPIC TAGS—PLASMA GSCILLATION, LOW FREQUENCY, STELLARATOR TCPIC TAGS—PLASMA GSCILLATIONS CCHTRCL MARKING—NO RESTRICTIONS DECUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1999/1481 STEP NG—UR/0089/70/028/002/0126/0129	SCURCEMOSCON, ATCHNAYA ENERGIYA	A. VOL 28, NO 2, FEB 70, PP 120-127
TCPIC TAGS—PLASMA QSCILLATION, LOW FRED CENTROL MARKING—NO RESTRICTIONS CENTROL MARKING—NO RESTRICTIONS DISCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1999/1481 STEP NO—UR/0089/70/028/002/0126/0129	DATE PUBLISHED70	
TCPIC TAGS—PLASMA GSCILLATION, LOW FRED CENTROL MARKING—NO RESTRICTIONS CENTROL MARKING—NO RESTRICTIONS DGCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—1999/1481 STEP NO—UR/0089/70/028/002/0126/0129		I A O ATOR
CCNTRCL MARKING-NO RESTRICTIONS DECUMENT CLASSUNCLASSIFIED PROXY REEL/FRAME1999/1481 STEP NOUR/C089/70/028/002/0126/0129	TCPIC TAGS-PLASMA OSCILLATION,	LOW FREQUENCY, STELLARATON
DECUMENT CLASSUNCLASSIFIED STEP NGUR/0089/70/028/004	보다 : (1995년 - 1997년 - 전한 19일본 - 1997년 - 199 - 1997년 - 1997	
DECUMENT CLASSUNCLASSIFIED STEP NOUR/0089/70/028/0049/70/0089/	THE MARKING-NO RESTRICTION	
CIRC ACCESSION NOAPO123384 UNCLASSIFIED	- ACC -UNCLASSIFIED	STEP NO-UR/0089/70/028/002/0126/0129
	CIRC ACCESSION NO-APO123384 UNCLA	ASSIFIED

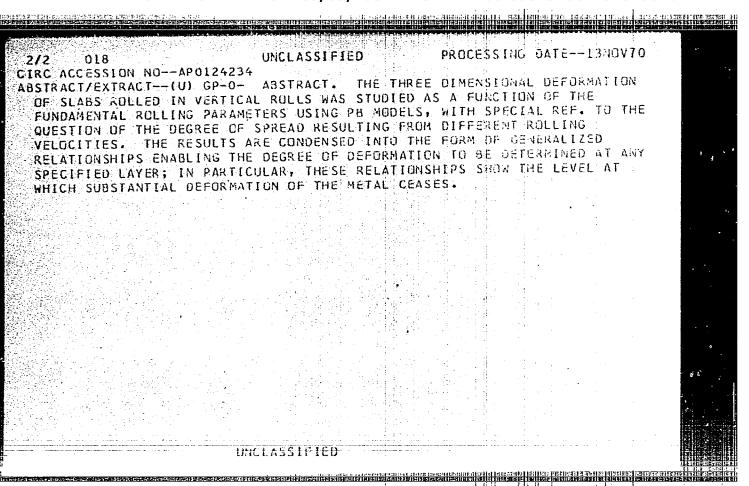
USSR

WC 669.295.539.2.539.214

TRENOGINA, T. L., MURZAYEVA, G. V., LERINMAN, R. M., POTAPENKO, YU. I., and KAGANOVICH, I. N., Institute of Physics of Metals, Academy of Sciences USSR

"Electron-Microscope Study of Structural Changes Occurring Upon High Temperature Thermomechanical Treatment of Titanium Alloys"

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 36, No 6, Dec 73, pp 1242-1252.


Abstract: The microstructural changes occurring in VT15 (beta alloy) and VT9 (alpha plus beta alloy) upon high temperature thermomechanical treatment were studied using the method of transmission electron microscopy. Particular attention was given to the influence of the duration of the pause between the end of deformation and hardening on the microstructure of the alloys. It was established that it is the creation of a polygonized structure which is responsible for the favorable combination of strength and plastic characteristics of these alloys. It is shown that as the duration of the pause between the end of deformation and hardening is increased, the increase in plasticity and decrease in strength observed results primarily from a change in the phase ratio and the dispersion of the phases.

1/1

- 52 --

PERCENTIFICATION OF THE PROPERTY OF THE PROPER

UNCLASSIFIED PROCESSING DATE--13NOV70 TITLE--DEFORMATION IN THE ROLLING OF SLABS IN VERTICAL ROLLS -U-AUTHOR-(03)-ODINOKOV, YU.I., SHKLOVSKY, V.YA., POTAPKIN, V.F. COUNTRY OF INFO--USSR SOURCE-- IZVEST. V.U.Z., CHERNAYA MET., 1970, (2), 87-90 DATE PUBLISHED-----70 SUBJECT AREAS-MATERIALS, MECH., IND., CIVIL AND MARINE ENGR TOPIC TAGS--METAL ROLLING, METAL DEFORMATION, LEAD CONTROL MARKING-NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NU--UR/0148/70/000/002/0087/0090 PROXY RESLIFRAME--2000/0539 CIRC ACCESSION NU--APO124234 UNCLASSIFIED

USSR

UDC: 681.327.6

NOVOPASHENNYY, G. N., POTAPKIN, V. K., Leningrad "Order of Lenin" Polytechnical Institute imeni M. I. Kalinin

"A Buffer Memory Device"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 20, Jul 72, Author's Certificate No 343300, Division G, filed 15 Sep 69, published 22 Jun 72, p 174

Translation: This Author's Certificate introduces a buffer memory device which contains switches with their first inputs connected together and tied to storage flip-flops while their outputs are connected to shift register cells. The device also contains recording and readout lines. As a distinguishing feature of the patent, the reliability of the device is improved by adding a reversible counter with one of its inputs connected to the readout bus and the other to the recording bus, while the outputs of the counter cells are connected to the second inputs of the switches.

1/1

- 12 -

TO THE PARTY OF TH

USSR

POTAPKOV, N. A. (Steklov Mathematics Institute of the USSR Academy of Sciences)

"Perturbation Theory With Variational Parameter, Inequalities and Evaluations for the Free Energy"

Moscow, Teoreticheskaya i Matematicheskaya Fizika, June 1973, pp 407-416

Abstract: A perturbation theory scheme based on the representation of the free energy in the form of a sequence $F_k(\sigma_k)$ (σ_k is the ordering parameter) is proposed. From the minimum condition for $F_k(\sigma_k)$ the equation of state is obtained and the temperature of the phase transition $T_c^{(k)}$ is determined. For the Heisenberg and Ising models the term F_2 is calculated (F_1 being the well-known molecular field approximation), and for the Ising model the inequality $F_1 > F_2 > F$ is deduced, showing that F_2 is a better approximation than F_1 . The temperature $T_c^{(2)}$ is found for both models. The behavior of the free energy expansion for $T \to 0$ is investigated.

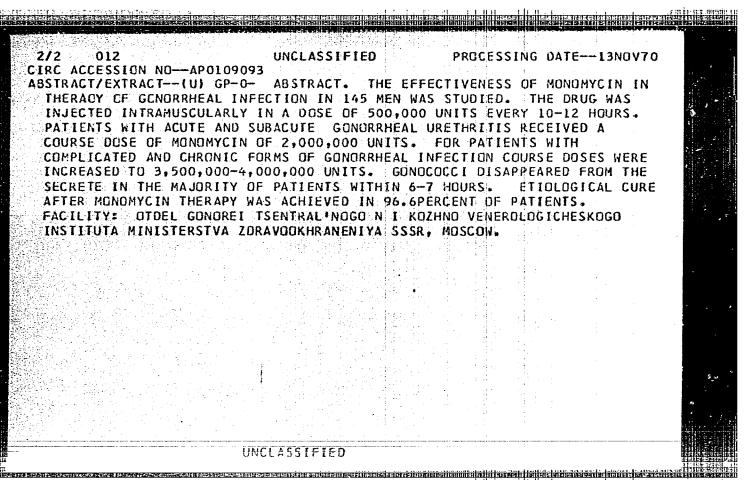
1/1

- 76 -

THE PROPERTY SELECTION OF THE PROPERTY OF THE

UNCLASSIFIED PROCESSING DATE--13NOV70 TITLE-SOME OBSERVATIONS ON THE EFFECTIVENESS OF MONDMYCIN IN THERAPY OF GUNGRAHEA IN MEN -U-AUTHOR-(05)-GRIGORYEV, V.YE., POTAPNEV, F.V., SKURATOVICH, A.A., GRACHEV, SOURCE-VESTNIK DERMATOLOGII I VENEROLOGII, 1970, NR 4, PP 59-62 DATE PUBLISHED -----70 SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ANTIBIOTIC, VENEREAL DISEASE, MONOMYCIN


CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1990/0936

STEP NU--UR/0206/70/000/004/0059/0062

CIRC ACCESSION NO-APO109093

UNCLASS IF LED

USSR

UDC: 621.317.7:621.317.335.029.64

GUDKOV, O. I., CHUGUNOV, Yu. I., POTAPOV, A. A.

"Instruments for Measuring the Permittivity and Loss Targent of a Material on Superhigh Frequencies, and the Dielectric Characteristics of Mica on a Frequency of 9.2 GHz"

Dokl. Vses. nauchno-tekhn. konferentsii po radiotekhn. izmereniyam. T. 1 (Reports of the All-Union Scientific and Technical Conference on Radio Engineering Measurements. Vol. 1), Novosibirsk, 1970, pp 88-89 (from RZh-Radiotekhnika, No 1, Jan 71, Abstract No 1A364)

Translation: A brief report is given on laboratory microwave dielcometers of the "Resonance" and "Helium" types developed by the Angarsk Affiliate of the Experimental Design Office of Automation for substances in any phase. Operation of the instruments is based on measurement of the frequency difference of two resonators -- a working resonator and a measurement resonator. A table is given of the results of measurement of the permittivity and loss tangent of crystals of natural mica from East Siberian deposits. E. L.

retaine de la compara de l La compara de la compara d

1/1

USSR

UDC 62-531.4

DOROSHKEVICH, Ye.M., KOZLOV, E.P., POTAPOV. A.A., SHAPKAYTS, G.I.

"A Tracking System"

USSR Author's Certificate No 263014, Filed 23/12/68, Published 8/06/70 (Translated from Referativnyy Zhurnal Avtomatika, Telemekhanika 1 Vychislitel'naya Tekhnika, No 12, 1970, Abstract No 12 A277P)

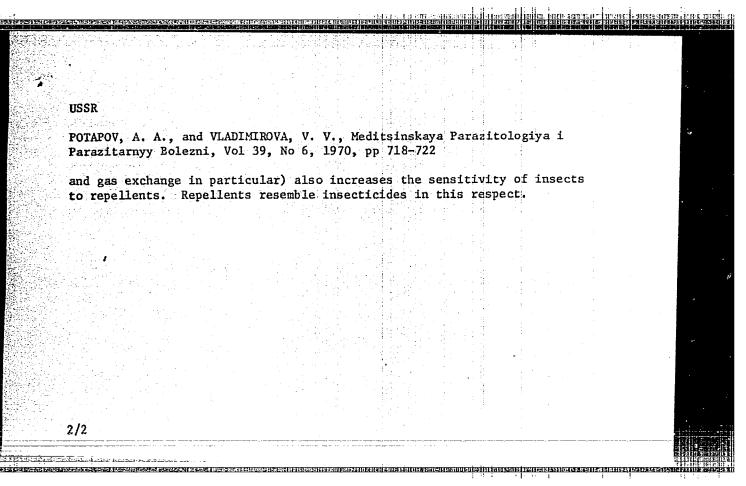
Translation: A tracking system is suggested containing a sensor, sine-cosine transformer, amplifiers, a phase detector, and an actuating motor. It differs in that in order to increase accuracy, it contains an additional commutator, one input of which is connected to an external reference voltage source, the other to the cosine winding of the sine-cosine transformer rotor, while the output is connected to the reference voltage input of the phase detector.

1/1

- 21 -

USSR

WC 576.895.771-095.18:615.285.7:632.936.3


POTAPOV, A. A., and VLADIMIROVA, V. V., Entomology Section, Institute of Medical Parasitology and Tropical Medicine imeni Ye. I. Martsinovskiy, Ministry of Health USSR, Moscow

"The Mechanism of Action of Repellent Fumes on Mosquitoes and Other Blood-Sucking Insects. Communication 4"

Moscow, Meditsinskaya Parazitologiya i Parazitarnyy Bolezni, Vol 39, No 6, 1970, pp 718-722

Abstract: The sensitivity of mosquitoes and horseflies to the fumes of such repellents as furan-2-caroboxylic acid diethylamide (P-320), benzoic acid diethylamide (P-2), etc. is closely related to the insects' vital processes, particularly to the intensity of respiration and gas exchange. They are most active when the temperature and relative humidity are optimum and therefore react most sharply to repellents. The repellent effect is possible only in close propinquity to the surface treated with the substance, i.e., at fairly high concentrations of fumes in the nir. This determines the amount of fumes that may penetrate into the traches and the degree of irritation of the insects' olfactory receptors. The metaorological and other conditions intensifying physiological functions (respiration

A THE PROPERTY PROPERTY AND A STREET OF THE PROPERTY PROPERTY AND A STREET OF THE PROPERTY PR

USSR

UDC 531.383;62.752.4

POTAPOV. A. A. Kazan' Aviation Institute

"Concerning Design Damping in Gyroscopic Devices"

Leningrad, IVUZ, Priborostroyeniye, No 11, 1970, pp 75-78

Abstract: The article deals with a free gyroscope with the source of design damping forces in the gyro housing. Methods of the applied theory of elastic oscillations are used to obtain expressions for taking the design damping forces into account in the equations of motion of the gyroscope, with arbitrary articulation design. 1 figure, 2 bibliographic entries.

1/1

. 10u. --

USSR

UDC: 621.396.669.8:621.3.078-503.53

DOROSHKEVICH, Ye. M., KOZIOV, E. P., POTAPOV, A. A., SHAPKAYTS, G. I.

"A Tracking System"

Moscow, Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 18, 1970, Author's Certificate No 271617, filed 23 Dec 68, p 46

Abstract: This author's certificate introduces a tracking system which contains a pickup, sine-cosine transformer, circuit for suppression of quadrature interference made in the form of a key controlled by a full-wave rectifier with angle cutoff, amplifiers, a phase detector, and an actuating motor. As a distinguishing feature of the patent, the precision and reliability of the system are improved by adding a minimum signal amplitude limiter connected in parallel with the circuit for suppression of quadrature interference. The cosine winding of the sine-cosine transformer rotor is connected to the input of the full-wave rectifier.

1/1

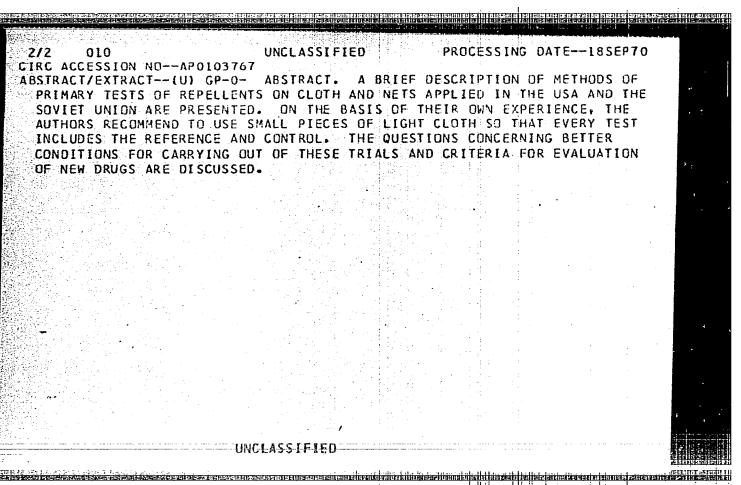
257 -

1/2 010 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--PRIMARY LABORATORY AND FIELD TRIALS OF REPELLENTS AGAINST GNATS ON
THE TISSUE -UAUTHOR-(02)-POTAPOV, A.A., KOSHKINA, I.V.

COUNTRY OF INFO--USSR, UNITED STATES

SOURCE-MEDITSINSKAYA PARAZITOLOGIYA I PARAZITARNYYE BOLEZNI, 1970, VOL 39, NR 1, PP 45-49 DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES
TOPIC TAGS--INSECT REPELLENT, TEST METHOD


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1987/0087

STEP NO--UR/0358/70/039/001/0045/0049

CIRC ACCESSION NO--APO103767

UNCLASSIFIED

USSR

UDC 621.375.4+62-83

GLUKHAREV, A. A., DOROSHKEVICH, Ye. M., POTAPOV, A. A., FEDOROV, A. V., FILATOV, G. I.

"A Power Amplifier"

USSR Author's Certificate No 321916, filed 19 Sep 70, published 24 Jan 72 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 9, Sep 72, Abstract No 9A81 P)

Translation: As a distinguishing feature of the proposed power amplifier, operational reliability is improved by adding a DC correcting link connected between a phase-insensitive rectifier and a transistorized controlled resistor. One illustration. V. T.

1/1

USSR

UDC 595.771/.772-19(470.46)

POTAPOV, A. A., VIADIMIROV, V. V., MEL'HIK, T. D., and BOGDANOVA, Ye. N., Institute of Medical Parasitology and Tropical Medicine imeni Ye. I. Martsinovskiy, Ministry of Health USSR, Moscow

"The Species Composition and Diurnal Activity of Mosquitoes and Gadflies in the Lower Volga Delta"

Moscow, Meditsinskaya Parazitologiya i Parazitarnyye Bolezni, Vol 42, No 1, Jan/Feb 73, pp 5-11

Abstract: Observations carried out in the lower Volga delta (Obzhorsk district of the Astrakhan' Reservation) through Jun/Aug in 1966-67 indicated that 6 mosquito species, 12 gadfly species, and 2 gnat species bread there. The most numerous species of mosquitoes were Aedes vexans and Anopheles hircanus and the most numerous species of gadflies Hybomitra acuminatus and H. pecularis and also (in 1966, a year of high floods) Chrysops relictus and Chr. flavipes. The maximum activity of mosquitoes and gnats, as far as attacks on humans were concerned, was in the morning and evening hours, and the maximum activity of gadflies in the daytime. Among mosquitoes only Ae. vexans and Ae. caspius attacked in the daytime in the shade - An. hyrcanus, An. maculipennis, and Mansonia richiardii mosquitoes became active in the cool air after dark. Of gadflies 1/2

. USSR

POTAPOV, A. A., et al., Meditsinskaya Parazitologiya i Parazitarnyye Bolezni, Vol 42, No 1, Jan/Feb 73, pp 5-11

with mass occurrence the most thermophilic were Chr. relictus and H. peculiaris, which attacked at the hottest time in the afternoon. In the evening, when inversion air currents developed, A. vexans mosquitoes were displaced upwards to the tree tops.

2/2

USSR

udo 534.232.082.75-8(068.8)(47)

KRASNIKOV, YE.N., FOLYAKOV, V.YE., POTAPOV. A.I. (Leningr.inzh.-stroit.in-t--Leningred Civil Engineering Institute)

"Piezoelectric Transducer"

USSR Author's Certificate No 501181, filed 8 Sept 69, published 29 July 71 (from RZh: Elektronika i yeye primeneniye, No 2, Feb 72, Abstract No 2A478P)

Translation: A piezoelectric transducer is proposed which can be used in ultrasonic devices (defectoscopes, measurers of velocity and attenuation of elastic waves) which are used for nondestructive quality inspection and determination of the physicomechanical properties of polymeric materials and products. The transducer contains an oscillator, an electrical delay line, a unit [blok] for division of the signal, and a piezoelectric vibrator. With the object of obtaining pulses with a duration equal to half of the oscillation period of the piezoelement, the piezoelectric vibrator is formed of three elements with equal acoustic resistance, the outside of which are piezoective and connected with outputs of the unit for division of signals; one output of the unit directly and the other across the electrical delay line connected to the output of the oscillator, and the central element serves as the mechanical half-wave delay line. The circuit of the transducer is presented. I ill. L.K.

1/1

... 86 ...

USSR

UDC 681.326

KHITRIN, A. Ha., POTAPOV, A. I.

"Some Problems of Design of Automatic Diode Matrix Test Circuits"

Elektron. Tekhnika. Nauchno-tekhn. Sb. Upr. Kachestvom i Standartiz [Electronic Equipment. Scientific and Technical Collection. Quality Control and Standardization], No. 2, 1970, pp 68-75 (Translated from Referativnyy Zhurnal Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No. 4, 1971, Abstract No. 4B443 by VV).

Translation: A device is described which allows testing of the operation of diode matrices to be performed automatically. A block diagram is described and several versions of realization of individual units are suggested. 6 figs, 4 biblio refs.

1/1

USSR

RESERVED DE LE COMPTE DE LE COMP

UDC 621.383.292

PGTAPOV, A. M., MELAMID, A. YE., IVANOV, A. P.

"Effect of Temperature on the Parameters of the FEU-86 Photomultiplier During Storage"

Moscow, Pribory i Tekhnika Eksperimenta, No 5, 1972, pp 181-183

Abstract: The variations in the basic parameters of the FEU-86 photomultiplier during storage were measured. The measurement procedure and results are presented. At a temperature of +50° C the parameters become sharply worse. At a storage temperature of +40° C no sharp variations in the parameters are observed. The sharpest changes in the parameters of the photomultiplier take place in the first 50 to 100 hours of storage, and the greater these variations, the greater the variations will be at the end of the storage period.

Absence of correlations between the variations in noise and anode sensitivity and, primarily, between the light noise and the anode sensitivity seems unlikely inasmuch as the variation in noise must be proportional to the variation in amplification (anode sensitivity). This is explained by the variation in sensitivity of the photocathode during storage and the occurrence of additional noise not connected with the photocathode noise (optical and ion feedback). The first cause is excluded since the variation in photocathode sensitivity after the measurements was no more than 20%. The absence of the

USSR

POTAPOV, A. M., et al., Pribory i Tekhnika Eksperimenta, No 5, 1972, pp 181-183

correlation must be attributed to the occurrence of additional noise. The absence of the correlation does not permit regulation of the anode sensitivity in the automatic gain control systems by the dark or light noise of the photomultiplier.

2/2

105

TISSE

UDC: 62-531

NOVOSELOV, B. V., KOBZEV, A. A., GOROKHOV, Yu. S., BALABOLOV, G. A. and POTAPOV, A. M.

"Servo System of Combined Control"

USSR Author's Certificate No 280613, filed 30 May 69, published 1 Dec 70 (from RZh-Avtomatika, telemekhanika i vychislitel'naya tekhnika, No. 12, 1971, Abstract No 12A167P)

Translation: The proposed device is distinguished from the known ones by its additional self-tuned block, whose output is connected to the inputs of both differentiators, one of the inputs being tied directly to the output of the first differentiator, the other being connected through a switch. Also, the system differs in that there is an additional connection to the output of the compensating device of the second low-frequency filter, and connected to its output is a third differentiator whose output is joined to the input of the switch; there is also a connection between the second differentiator of the compensating device and a relay block, with still another differentiator connected to its input. The differentiator input is tied to the output of the first differentiator. however

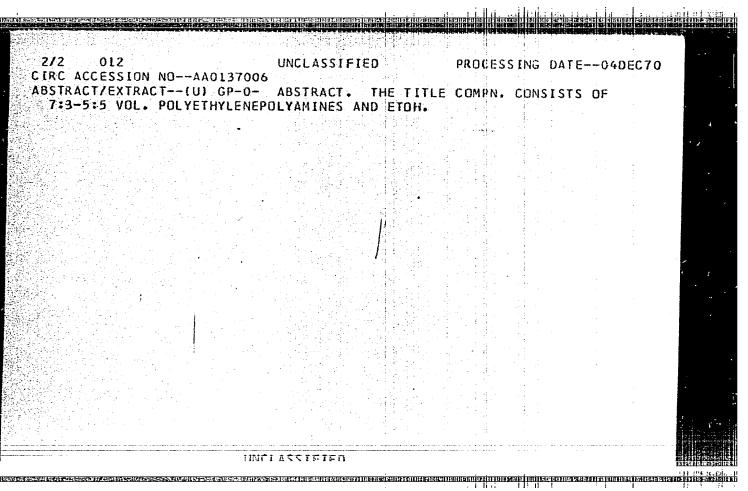
ARE LEADING THE CONTROL OF THE CONTR

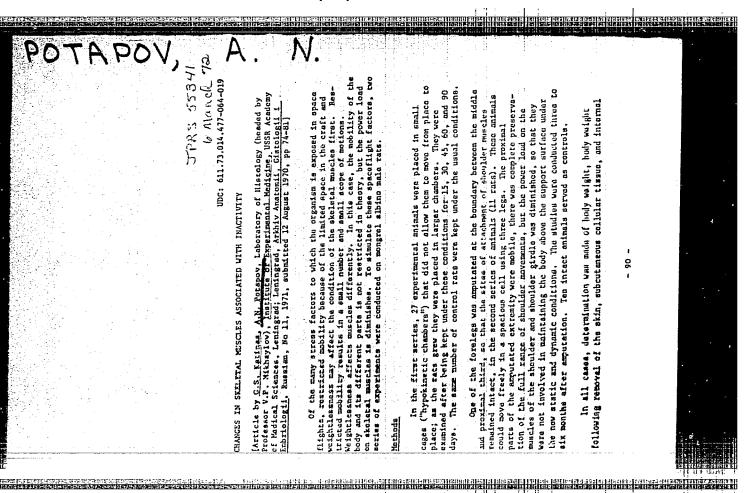
USSR

UDO 621.383.292.8

LEVIN, G.E., GRISHIN, M.YE., PCTAPCV, A.M.

"Photoelectron Device"


USSR Author's Certificate No 253951, filed 5 June 68, published 16 June 70 (from RZh-Elektronike i yeye primeneniye, No 12, December 1970, Abetract No 12A243P)


Translation: A photoelectron device is proposed which consists of a photomultiplier with a high resolution time and a resonator coupled with it, which has separate channels for input and output of the signal. With the object of an increase of the signal-to-noise ratio during reception of optical signals modulated in a narrow band of the microwave range, the anode input of the photomultiplier is introduced into the resonator cavity through an input channel and has the form of a loop.

1/1

UNCLASSIFIED. PROCESSING DATE--04DECTO 1/2 012 TITLE--COMPOSITION FOR REMOVING LAC DYE COATINGS -U-AUTHOR-(05)-VOLODIN, N.L., GARIFZYANOV, G.G., RAKHIHOV, R.R., POTAPOV, A.M. SHAROV, V.G. COUNTRY OF INFO--USSR SOURCE--U.S.S.R. 265,341 REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI 1970, DATE PUBLISHED--09MAR 70 SUBJECT AREAS -- MATERIALS, CHEMISTRY TOPIC TAGS--LACQUER, DYE, ORGANIC SOLVENT, CHEMICAL PATENT, POLYETHYLENE, POLYANINE CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0482/70/000/000/0000/0000 PROXY REEL/FRAME--3007/1766 -CIRC-ACCESSION-NO--AA0137006----

12:01 125 18 18 19

8

USSR

UDC: 612.766.2

KOVALENKO, Ye. A., POPKOV, V. L., KONDRAT'YEV, Yu. I., MATLYAN, E.S., CALUSHKO, Yu. S., PROKHONCHUKOV, A. A., KAZARYAN, V. A., MOROZOVA, R. S., SEROVA, L. V., POTAPOV, A. N., ROMANOV, V. S., and PISHCHIK, V. B.

"Shifts in the Functions of the Organism During Prolonged Hypolinesia"

Moscow, Patologicheskaya Fiziologiya i Eksperimental'naya Terapiya, Vol 14, No 6, Nov/Dec 70, pp 3-9

Abstract: Rats kept immobilized for up to 170 days in special cages showed an increase in general gas exchange and rate of oxygen utilization in the muscles, and a slowing of the rate of tissue metabolism in the liver and myocardium. The level of phosphotylation in the myocardium and, to some extent, in the skeletal muscles and liver dropped. Prolonged hypokinesia also stunted the animals' growth, pervented them from gaining weight, and in some cases caused them to lose weight. Besides disturbing mineral and protein metabolism, immobilization resulted in exhaustion of the hypothalamus - pituitary - adrenal cortex system.

1/1

USSR

WC 621.375.82

GIAZER, A. A., NIKITINA, T. F., PANTELEYEV, V. I., PLOTNIKOV, A. F., POPOV, YU. H., POTAPOV, A. P., SELEZNEV, V. N., TAGIROV, R. I., and SHUR, YA. S.

"Using CaAs and Nd Lasers for Optical Writing on MnBi Film"

Kratkiye Soobshch. po fiz. (Brief Communications on Physics) No 12, 1972, pp 9-12 (from RZh-Fizika, No 7, 1973, Abstract No 7D1088)

Translation: The possibility of using a GaAs semiconductor laser for recording information on a ferromagnetic film of MnBi is experimentally investigated. MnBi film 700 Å thick, which has undergone condensation in a vacuum on glass substrates of 0.1-0.2 mm in thickness, is used. For recording information, a GaAs laser with a threshold current of 2 amp at 77 K and a p-n junction width of 400 Å is used. It is shown that the laser's minimum pumping current at which recording is possible is 80 amp, whereas the radiation power is 20 w. The energy density of the radiation on the film is then 6.10-9 j/wi2. With a monopulse neodymium laser, an evaluation of an information recording density laser with a junction width not exceeding 20 permits reducing the power to a fraction of a watt. Bibliography of four.

- 38 -

USSR

UDC 538.221

GLAZER, A. A., POTAPOV, A. P., TAGIROV, R. I., and KONSTANTINOVA, I. YU., Institute of the Physics of Metals, Ural Scientific Center, Academy of Sciences USSR

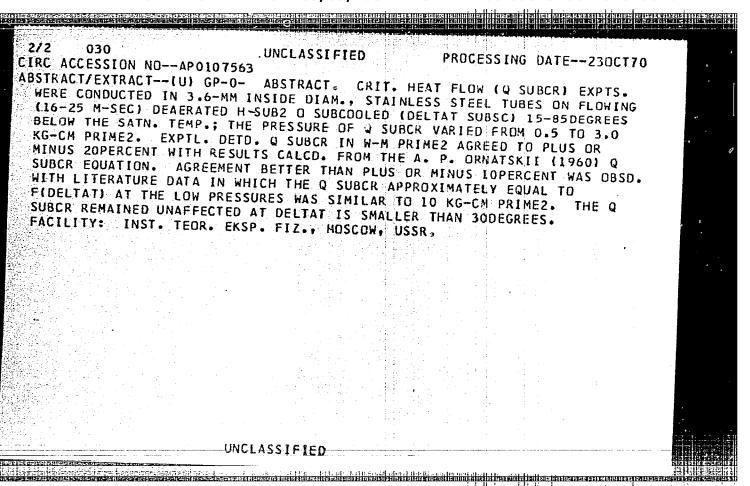
"Temperature Dependence of Magnetic Properties and Perpendicular Anisotropy of 'Transcritical' Films"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya, Vol 36, No 6, 1972, pp 1195-1198

Abstract: A detailed understanding of the physical nature of the "transcritical" state requires a knowledge of the quantitative relation between $I_{\rm B}$ and K_{\perp} , on the one hand, and the hysteresis loop parameters and rotatable anisotropy, on the other. The article attempts to establish such a relation by studying the temperature dependence of K_{\perp} , $I_{\rm S}$, $H_{\rm S}$, $H_{\rm C}$, $I_{\rm r}/I_{\rm S}$; the "flaking" field; and the rotatable anisotropy constant in "transcritical" 86Ni-14Fe alloy films 2400 Å in width at temperatures from -196 to +200° C. The results are compared with theoretical results obtained from formulas based on the open stripe-domain structure model.

1/1

. 32 .


ingris serves se

1/2 030 UNCLASSIFIED TITLE--HEAT TRANSFER CRISIS DURING BOILING WITH SUBCOOLED WATER MOVING IN PROCESSING DATE--230CT70 PIPES AT HIGH SPEEDS AND AT LOW PRESSURE -U-AUTHOR-(03)-SHLYKOV, YU.P., LEONGARDT, A.D., POTAPOV, A.P. COUNTRY OF INFO--USSR SOURCE-TEPLOENERGETIKA 1970, 17(3), 63-5 DATE PUBLISHED ---- 70 SUBJECT AREAS -- PHYSICS TOPIC TAGS--BOILING, HEAT TRANSFER RATE, STAINLESS STEEL TUBE, WATER, FLOW CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1054

STEP NO--UR/0096/70/017/003/0063/0065

CIRC ACCESSION NO--APO107563

UNCLASSIFIED

USSR

UDC: 681.3.06:51

ASHKINUZE, V. G., POTAPOV, B. I.

"The 'Nyanya' and 'Kontrol' Debugging Programs"

Tr. 3-y Zimney shkoly po mat. programmir. 1 smezhnym vopr., 1970. Vyp. 1 (Works of the Third Winter School on Mathematical Programming and Related Problems, 1970, No 1), Moscow, 1970, pp 70-92 (from RZh-Kibernetika, No 7, Jul 71, Abstract No 7V745)

Translation: A detailed description is given of the NYaNYa and KONTROL' debugging programs. The purpose of these programs is to give the programmer detailed information on the operation of his program or separate fragments of that program. The proposed programs are accommodated in cells from 1000 to 1777 of the first array of the core store, and are designed for operational debugging. Upon completion of debugging, the conclusive information is printed out. Provision is made for self protection of the debugging programs from impairment by the main program. NYaNYa twists the debugged program or its individual sections and prints out information concerning commands of interest to the programmer on these

1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

ASHKINUZE, V. G., POTAPOV, B. I., <u>Tr. 3-y Zimney shkoly po mat. program-mir.</u> i smezhnym vopr., 1970. <u>Vyp. 1</u>, Moscow, 1970, pp 70-92

sections. The rate of twist without printout is 160 commands per second. The rate of printout is ≈ 2 commands per second. Its information structure ensures maximum selectivity of the output information. There is an abbreviated version of NYaNYa-2 which operates with information preset from the panel. At certain points of the program being debugged, KON-TROL compares the results obtained by this program with predetermined standards, and after detecting an error, organizes twisting of this section (by means of NYaNYa). I. Shelikhova.

- 71 -

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

USSR

UDC: 669.35'725:620.16

POLINA, T. V., POTAPOV, B. S., STERELYUKHIN, V. A.

"Erosion Wear of PER Contacts of Copper-Beryllium Alloys"

Vychisl. Sistemy [Computer Systems -- Collection of Works], No 52, Novosibirsk, 1972, pp 143-148 (Translated from Referativnyy Zhurnal Metallurgiya, No 8, 1973, Abstract No 81703, by the authors).

Translation: Conditions and method of conduct of an experiment for determination of the erosion wear of film contacts are described. For the range of switched dc voltages of 3-50 v, currents 2-10 ma, it is established that material transfer is determined primarily by the switched voltage, and is practically independent of current. It is also demonstrated that the amount of material transferred in a switching cycle (closing-opening) for V = const, I = 2-10 ma in independent of the number of switchings N and remains constant with an accuracy of $\pm 20\%$ up to N = 10^6 . Based on experimental data, an empirical formula is suggested, satisfactorily describing the erosion wear of film contacts of Cu-Be alloy for the range of switched voltages 20-50 v. 6 figures, 2 bibliorefs.

1/1

. สา ...

USSR

UDC: 621.791.011:669.15-194

MNUSHKIN, O. S., POTAPOV, B. V., LEVIN, A. Ye., Leningrad Polytechnic Institute imeni M. I. Kalinin

"Influence of Preliminary High-Temperature Deformation on Welded Joints in Austenitic Steel"

Kiev, Avtomaticheskaya Svarka, No 8, Aug 73, pp 10-12.

Abstract: The influence of high-temperature deformation of austenitic steel on the tendency of the near-seam zone to intercrystalline rupture is studied. The results indicate that high temperature deformation during welding, accompanied by slipping between grains, might intensify intergrain slippage during subsequent tests and thereby decrease the deformation capability of the welded joint.

1/1

- 59 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

1/2 010
TITLE—POTATGES AS AN IMPORTANT SOURCE OF THE VITAMIN C SUPPLY IN THE NORTH -U-AUTHOR-(02)-SHIBRYA, G.I., POTAPOV, F.F.

COUNTRY OF INFO--USSR

SOURCE—VOPROSY PITANIYA, 1970, NR 3, PP 54-57

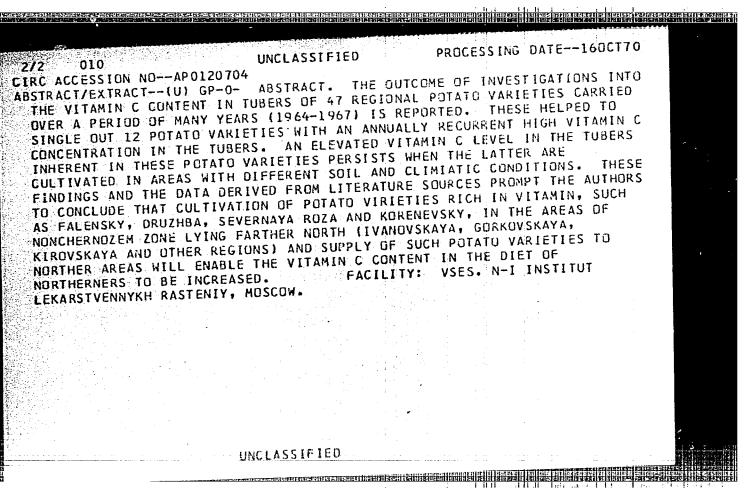
DATE PUBLISHED————70

SUBJECT AREAS—AGRICULTURE, BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS—VEGETABLE CROP, ASCORBIC ACID, SOIL CHEMISTRY, CLIMATIC

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1998/0004

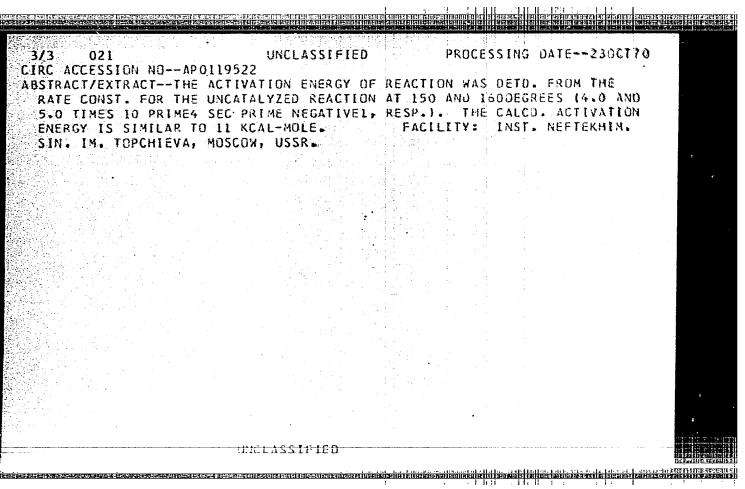

STEP NO--UR/0244/70/000/003/0054/0057

CIRC ACCESSION NO--APO120704

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

1. 16479 FO DE. DE HERE BERFEREN ELLE FERENCE EL EL FERENCE EL FORTE DE HORIZON DE LA CONTRE LE BROWN DE HERE BERFEREN EL FORTE E



PROCESSING DATE--230CT70 UNCLASSIFIED TITLE-~HYDROXYETHYLATION OF NAPHTHENIC ACID BASED AMINES -U-AUTHOR-(03)-NAMETKIN, N.S., YEGOROVA, G.M., POTAPOV, G.P. COUNTRY OF INFO--USSR SOURCE--NEFTEKHIMIYA 1970, 10(1), 116-19 DATE PUBLISHED----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--NAPHTHENIC ACID, AMINE, CRUDE OIL, SURFACE ACTIVE AGENT, CATALYSIS, ACTIVATION ENERGY CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0204/70/010/001/0116/0119 PROXY REEL/FRAME--1997/0606 CIRC ACCESSION NO--AP0119522

2/3 UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--APO119522 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE CYCLOALIPHATIC AMINES DERIVED FROM NAPHTHENIC ACIDS FROM BAKU CRUDE DILS, B SUB1 110-30DEGREES AND 130-160DEGREES WERE ETHOXYLATED AND THE REACTION PRODUCTS STUDIED FOR SURFACE ACTIVE PROPERTIES. THE UNCATALYZED ETHOXYLATION GAVE ONLY N,N,BIS(HYDROXYETHYL)AMINES. THE REACTION CATALYZED BY SOLID KOH (0.5PERCENT) GAVE POLYOXYETHYLENAMINES WITH 2-14 OCH SUB2 CH SUB2 UNITS IN THE CHAIN, WITH AV. MOL. WT. 290-825. THE PRODUCTS HAVE A HIGH CLOUD POINT IN IPERCENT AQ. SOLN. THE LOWERING DE SURFACE TENSION OF THE AQ. SOLN. IS PROPORTIONAL TO THE CONCN.; THE MAX. EFFECT IS SHOWN BY COMPOS. WITH 5 OCH SUBZ CH SUBZ GROUPS IN THE CHAIN. THE IR SPECTRA HAVE BANDS AT 1130 AND 1260 CM PRIME NEGATIVET AND A BROAD BAND AT 3400 CM PRIME NEGATIVEL. THE PRODUCTS ARE USEFUL AS FLOTATION AGENTS FOR LI DRES. KINETIC STUDIES OF ETHOXYLATION WERE MADE ON THE HIGHER BOILING FRACTION AT AN INITIAL ETHYLENE OXIDE CONCN. OF 0.5 MOLE-L. THE RATE CONST. WAS CALCO. FROM THE SLOPE OF LOG DELTA P VS. TIME. FOR UNCATALYZED REACTION AT 140DEGREES, IT IS 3.0 TIMES 10 PRIME4 SEC PRIME NEGATIVE1. AUTOCATALYSIS OF THE REACTION WAS STUDIED BY ADON, OF CHOCH SUB2 CH SUB2) SUB2-NH TO THE INITIAL REACTION MIXT. THE AUTOCATALYSIS RATE WAS DETD. FROM A SERIES OF RUNS WITH VARIED INITIAL CONCN. OF (HOCH SUB2 CH SUB2) SUB2-NH AND 0.5 MOLE-L. INITIAL ETHYLENE OXIDE CONCN. CATALYTIC EFFECT OF (HOCH SUB2 CH SUB2) SUB2 NH IS PROPORTIONAL TO ITS CONCN. THE AUTOCATALYSIS RATE CONST. IS 23.7 TIMES 10 PRIMES L.-MOLE-SEC.

UNCLASSIFIED

1.154. Benderne bereichte beginde beim benacht beim benacht beneichte bestehen beneichte bestehen bestehen bestehen bestehen bestehen bestehen.

1/2 019
TITLE--ON SPECIALIZATION AND POSTGRADUATE MEDICAL TRAINING OF
AUTHOR--POTAPOV, I.I.

COUNTRY OF INFO--USSR

SOURCE-VESTNIK OTORINOLARINGOLOGII, 1970, NR 2, PP 115-118

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS-MEDICAL TRAINING, OTORLARYNGOLOGY, POSTGRADUATE EDUCATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1986/0630

STEP NO--UR/0607/70/000/002/0115/0118

CIRC ACCESSION NO--APO102616

UNCLASSIFIED

2/2 019 UNCLASSIFIED PROCESSING DATE--11SERTO CIRC ACCESSION NO--APO102616 ABSTRACT/EXTRACT--(µ) GP-0- ABSTRACT. THE PHYSICIAN SHOULD LEARN ALL HIS LIFE. HOWEVER, FOR THE PRACTICING PHYSICIAN THIS IS QUITE DIFFICULT. AT THE PRESENT TIME ON THE SUBJECT OF OTORHINOLARYNGOLOGY MANY COUNTRIES PUBLISH OVER 60 JOURNALS, WITH THE EXCEPTION OF ARTICLES APPEARING IN SYMPOSTA, CONFERENCES, CONGRESSES, AS WELL AS BROCHURES AND BOOKS. DAILY MEDICAL WORK MAKES IT IMPOSSIBLE TO READ THIS VAST AMOUNT OF BESIDES, THIS IS AN EVER GROWING LIST OF NEW DRUGS AND EQUIPMENT THE FAMILIARIZATION WITH WHICH REQUIRES THEIR CRITICAL ASSESSMENT AND A NUMBER OF ADDITIONAL INFORMATION ON MATHEMATICS, CIBERNETICS, BIOLOGY, ELECTRONICS, BIOPHYSICS, BIOCHEMISTRY, ETC. PRESENT ONLY SPECIALISTS ARE REQUIRED. OTORHINDLARYNGOLOGICAL SPECIALIZATION IS EFFECTED IN INSTITUTES OF POSTGRADUATE MEDICAL TRAINING. IN HOSPITALS OF MEDICAL INSTITUTES AND IN LARGE OTORHINOLARYNGOLOGICAL CLINICS. A TWO YEAR HOSPITAL TRAINING PLAYS A PROMINENT ROLE IN THE SPECIALIZATION. OTORHINDLARYNGOLOGISTS TRAIN ACCORDING TO TWO CYCLES: GENERAL IMPROVEMENT, SEMITHEMATIC, TELEMATIC WITH PRECYCLE TRAINING, FIELD CYCLES, AS WELL AS SEMINARS SYMPOSIA HEADED BY PEDAGOGICAL STAFF OF MEDICAL INSTITUTES AND INSTITUTES OF POSTGRADUATE MEDICAL TRAINING. UNCLASSIFIED

USSR

UDC 621.357.7:669.15'26'779(088.8)

BONDAR', V. V. and POTAPOV, I. I.

"Electrolytic Plating with Chromium Alloys"

USSR Author's Certificate No 325276, Filed 8 Jun 70, Published 25 Feb 72 (from Referativnyy Zhurnal -- Khimiya, No 21(II), 1972, Abstract No 21L311P)

Translation: The patented method differs from other by the presence of ammonium hypophosphite in the known electrolyte containing $\text{Cr}_2(\text{SO}_{l_1})_3$ and FeSO_{l_1} and is used for production of the corrosion-resistant, protective and decorative coatings of Cr-Fe-P magnetic alloys. Example: light, shiny coatings containing 79% Fe, 6-8% Cr, 12-15% P, with a coersive force of ≤ 1 e were prepared in an electrolyte (in g/liter) consisting of 200 $\text{Cr}_2(\text{SOl}_1)_3 \cdot 5\text{H}_2\text{O}$, 75 $\text{FeSO}_{l_1} \cdot 7\text{H}_2\text{O}$, 10 ammonium hypophosphite, at pH 1-2, temp. 20-60°C, and D_{c} 5-15 a/dm², with VT_k [expansion unknown] $\sim 5-7\%$.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

USSR

WC 621.774.3

CHEST AND THE STREET OF THE PROPERTY OF THE PR

TSELIKOV, A. I., BONDARENKO, YE. S., POLUKHIN, P. I., and POTAPOV, I. N.,

"Development and Wide Introduction of New Technological Processes and Tube-Rolling Mills With Helical Motion for the Production of Hot-Rolled Tubes"

Moscow, Stal', No 12, 1972, pp 1107-1111

Abstract: Production of large-diameter tubes and equipment used during production processes are reviewed. The design and production of new mills capable of accepting material at a feeding angle of 14-15 or 15-170 has made Soviet production of tubes the most advanced in the world. Introduction of two-roll and three-roll mills will further increase the production of tubes while decreasing their cost. A schematic diagram of a two-roll mill is presented. Application of new technology at several metallurgical plants in the Urals region is discussed in broad terms. The emphasis is on increasing the feeding angles of the tube metal. Three-roll mills are planned for 1973, which will increase production effectiveness by 1.8-2.0 times. Mechanical properties of tubes produced at high feeding angles are discussed.

1/1

- 55 -

USSR

UDC 621.771.28

POTAPOV, I. N., POLUKHIN, P. I., BONDARENKO, Ye. S., YAMPOL'SKIY, V. M., FINAGIN, P. M., and TARTAKOVSKIY, Ye. K.

"Creating High Productivity Cross-Screw Pipe Rolling Mills"

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No 64, "Metallurgiya," 1970, pp 163-171

Translation: Information is given on the designs of individual and group drives of mills, two- and three-roll working stands, and forward and rear mill tables. Industrial introduction of these designs made it possible to implement new rolling conditions which resulted in a significant rise in the productivity of pipe rolling machines and in improvement in the quality of sleeves and pipes. Five figures and 13 bibliographic entries.

1/1

27 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202520010-7"

USSR

UDC 621.771.28.001.5

POLUKHIN, P. I., POTAPOV, I. N., FINAGIN, P. M., and SHEYKH-ALI, A. D.

"An Investigation of the Piercing Process on the 30-102-Type Rolling Aggregate"

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No 64, "Metallurgiya," 1970, pp 130-136

Translation: The article gives results of experimental investigations made on the TPAZO-102 tube-piercing mill of the power parameters of the piercing process in the area of large feeding angles. Measurements are made of the full pressure of the metal on the rolls, the force on the mandrel, the torsional moments, and the piercing power. The data obtained may be used in designing and calculating modern-type rolling aggregates. Six figures.

1/1

-19 -

USSR

UDC 621.771.28.001.5

POLUKHIN, P. I., POTAPOV, I. N., FINAGIN, P. M., and SHEYKH-ALI, A. D.

"An Investigation of Speed Conditions of the Piercing Process in the Area of Increased Feeding Angles and the Quality of Pipes"

Plasticheskaya Deformatsiya Metallov i Splavov, Moscow, No. 64, "Metallurgiya," 1970, pp 136-142

Translation: The article gives results of experimental investigations conducted on the TPAZO-102 tube-piercing mill of speed conditions of the piercing process with large feeding angles. A significant decrease in machine piercing time with an increase in the feeding angle is established. New conditions for the piercing process are developed which made it possible to improve the quality of sleeves and pipes in terms of surface condition and geometric conditions. Six figures and one table.

1/1